Diao, Enmao; Ding, Jie; Tarokh, Vahid (2020-10-02). "HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients". arXiv:2010.01264 [cs.LG].
Yu, Fuxun; Zhang, Weishan; Qin, Zhuwei; Xu, Zirui; Wang, Di; Liu, Chenchen; Tian, Zhi; Chen, Xiang (2021-08-14). "Fed2". Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. KDD '21. New York, NY, USA: Association for Computing Machinery. pp. 2066–2074. arXiv:2111.14248. doi:10.1145/3447548.3467309. ISBN978-1-4503-8332-5. S2CID240598436.
Gupta, Otkrist; Raskar, Ramesh (14 October 2018). "Distributed learning of deep neural network over multiple agents". arXiv:1810.06060 [cs.LG].
Vepakomma, Praneeth; Gupta, Otkrist; Swedish, Tristan; Raskar, Ramesh (3 December 2018). "Split learning for health: Distributed deep learning without sharing raw patient data". arXiv:1812.00564 [cs.LG].
Acar, Durmus Alp Emre; Zhao, Yue; Navarro, Ramon Matas; Mattina, Matthew; Whatmough, Paul N.; Saligrama, Venkatesh (2021). "Federated Learning Based on Dynamic Regularization". ICLR. arXiv:2111.04263.
Vahidian, Saeed; Morafah, Mahdi; Lin, Bill (2021). "Personalized Federated Learning by Structured and Unstructured Pruning under Data Heterogeneity". Icdcs-W. arXiv:2105.00562.
Yeganeh, Yousef; Farshad, Azade; Navab, Nassir; Albarqouni, Shadi (2020). "Inverse Distance Aggregation for Federated Learning with Non-IID Data". Icdcs-W. arXiv:2008.07665.
Overman, Tom; Blum, Garrett; Klabjan, Diego (2024). "A Primal-Dual Algorithm for Hybrid Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence. 38 (13): 14482–14489. arXiv:2210.08106. doi:10.1609/aaai.v38i13.29363.
Cotorobai, Alexandre; Silva, Jorge Miguel; Oliveira, José Luis (2025-06-18). "A Federated Random Forest Solution for Secure Distributed Machine Learning". 2025 IEEE 38th International Symposium on Computer-Based Medical Systems (CBMS). IEEE. pp. 769–774. arXiv:2505.08085. doi:10.1109/CBMS65348.2025.00159. ISBN979-8-3315-2610-8.
Konečný, Jakub; McMahan, H. Brendan; Yu, Felix X.; Richtárik, Peter; Suresh, Ananda Theertha; Bacon, Dave (30 October 2017). "Federated Learning: Strategies for Improving Communication Efficiency". arXiv:1610.05492 [cs.LG].
Liu, Boyi; Wang, Lujia; Liu, Ming (2019). "Lifelong Federated Reinforcement Learning: A Learning Architecture for Navigation in Cloud Robotic Systems". 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1688–1695. arXiv:1901.06455. doi:10.1109/IROS40897.2019.8967908. ISBN978-1-7281-4004-9. S2CID210972473.
Na, Seongin; Rouček, Tomáš; Ulrich, Jiří; Pikman, Jan; Krajník, Tomáš; Lennox, Barry; Arvin, Farshad (2023). "Federated Reinforcement Learning for Collective Navigation of Robotic Swarms". IEEE Transactions on Cognitive and Developmental Systems. 15 (4): 1. arXiv:2202.01141. Bibcode:2023ITCDS..15.2122N. doi:10.1109/TCDS.2023.3239815. S2CID246473085.
Yu, Xianjia; Queralta, Jorge Pena; Westerlund, Tomi (2022). "Towards Lifelong Federated Learning in Autonomous Mobile Robots with Continuous Sim-to-Real Transfer". Procedia Computer Science. 210: 86–93. arXiv:2205.15496. doi:10.1016/j.procs.2022.10.123.
Overman, Tom; Blum, Garrett; Klabjan, Diego (2024). "A Primal-Dual Algorithm for Hybrid Federated Learning". Proceedings of the AAAI Conference on Artificial Intelligence. 38 (13): 14482–14489. arXiv:2210.08106. doi:10.1609/aaai.v38i13.29363.
Cotorobai, Alexandre; Silva, Jorge Miguel; Oliveira, José Luis (2025-06-18). "A Federated Random Forest Solution for Secure Distributed Machine Learning". 2025 IEEE 38th International Symposium on Computer-Based Medical Systems (CBMS). IEEE. pp. 769–774. arXiv:2505.08085. doi:10.1109/CBMS65348.2025.00159. ISBN979-8-3315-2610-8.
Du, Zhiyong; Deng, Yansha; Guo, Weisi; Nallanathan, Arumugam; Wu, Qihui (2021). "Green Deep Reinforcement Learning for Radio Resource Management: Architecture, Algorithm Compression, and Challenges". IEEE Vehicular Technology Magazine. 16: 29–39. doi:10.1109/MVT.2020.3015184. hdl:1826/16378. S2CID204401715.
Pokhrel, Shiva Raj (2020). "Federated learning meets blockchain at 6G edge: A drone-assisted networking for disaster response". Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond. pp. 49–54. doi:10.1145/3414045.3415949. ISBN978-1-4503-8105-5. S2CID222179104.
Liu, Boyi; Wang, Lujia; Liu, Ming (2019). "Lifelong Federated Reinforcement Learning: A Learning Architecture for Navigation in Cloud Robotic Systems". 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1688–1695. arXiv:1901.06455. doi:10.1109/IROS40897.2019.8967908. ISBN978-1-7281-4004-9. S2CID210972473.
Na, Seongin; Rouček, Tomáš; Ulrich, Jiří; Pikman, Jan; Krajník, Tomáš; Lennox, Barry; Arvin, Farshad (2023). "Federated Reinforcement Learning for Collective Navigation of Robotic Swarms". IEEE Transactions on Cognitive and Developmental Systems. 15 (4): 1. arXiv:2202.01141. Bibcode:2023ITCDS..15.2122N. doi:10.1109/TCDS.2023.3239815. S2CID246473085.
Yu, Xianjia; Queralta, Jorge Pena; Westerlund, Tomi (2022). "Towards Lifelong Federated Learning in Autonomous Mobile Robots with Continuous Sim-to-Real Transfer". Procedia Computer Science. 210: 86–93. arXiv:2205.15496. doi:10.1016/j.procs.2022.10.123.
Du, Zhiyong; Deng, Yansha; Guo, Weisi; Nallanathan, Arumugam; Wu, Qihui (2021). "Green Deep Reinforcement Learning for Radio Resource Management: Architecture, Algorithm Compression, and Challenges". IEEE Vehicular Technology Magazine. 16: 29–39. doi:10.1109/MVT.2020.3015184. hdl:1826/16378. S2CID204401715.
Pokhrel, Shiva Raj (2020). "Federated learning meets blockchain at 6G edge: A drone-assisted networking for disaster response". Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond. pp. 49–54. doi:10.1145/3414045.3415949. ISBN978-1-4503-8105-5. S2CID222179104.
Liu, Boyi; Wang, Lujia; Liu, Ming (2019). "Lifelong Federated Reinforcement Learning: A Learning Architecture for Navigation in Cloud Robotic Systems". 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1688–1695. arXiv:1901.06455. doi:10.1109/IROS40897.2019.8967908. ISBN978-1-7281-4004-9. S2CID210972473.
Na, Seongin; Rouček, Tomáš; Ulrich, Jiří; Pikman, Jan; Krajník, Tomáš; Lennox, Barry; Arvin, Farshad (2023). "Federated Reinforcement Learning for Collective Navigation of Robotic Swarms". IEEE Transactions on Cognitive and Developmental Systems. 15 (4): 1. arXiv:2202.01141. Bibcode:2023ITCDS..15.2122N. doi:10.1109/TCDS.2023.3239815. S2CID246473085.