Feynman diagram (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Feynman diagram" in English language version.

refsWebsite
Global rank English rank
5,101st place
5,955th place
2nd place
2nd place
1st place
1st place
18th place
17th place
11th place
8th place
9th place
13th place
415th place
327th place
6,413th place
4,268th place
887th place
714th place
69th place
59th place
228th place
158th place
1,959th place
1,611th place
3rd place
3rd place
low place
low place
low place
low place
low place
low place
3,410th place
2,939th place
low place
low place

arxiv.org

books.google.com

caltech.edu

authors.library.caltech.edu

  • Feynman, Richard (1949). "The Theory of Positrons". Physical Review. 76 (6): 749–759. Bibcode:1949PhRv...76..749F. doi:10.1103/PhysRev.76.749. S2CID 120117564. Archived from the original on 2022-08-09. Retrieved 2021-11-12. In this solution, the 'negative energy states' appear in a form which may be pictured (as by Stückelberg) in space-time as waves traveling away from the external potential backwards in time. Experimentally, such a wave corresponds to a positron approaching the potential and annihilating the electron.

cern.ch

preprints.cern.ch

  • Gerardus 't Hooft, Martinus Veltman, Diagrammar, CERN Yellow Report 1973, reprinted in G. 't Hooft, Under the Spell of Gauge Principle (World Scientific, Singapore, 1994), Introduction online Archived 2005-03-19 at the Wayback Machine

doi.org

  • Kaiser, David (2005). "Physics and Feynman's Diagrams" (PDF). American Scientist. 93 (2): 156. doi:10.1511/2005.52.957. Archived (PDF) from the original on 2012-05-27.
  • Feynman, Richard (1949). "The Theory of Positrons". Physical Review. 76 (6): 749–759. Bibcode:1949PhRv...76..749F. doi:10.1103/PhysRev.76.749. S2CID 120117564. Archived from the original on 2022-08-09. Retrieved 2021-11-12. In this solution, the 'negative energy states' appear in a form which may be pictured (as by Stückelberg) in space-time as waves traveling away from the external potential backwards in time. Experimentally, such a wave corresponds to a positron approaching the potential and annihilating the electron.
  • Penco, R.; Mauro, D. (2006). "Perturbation theory via Feynman diagrams in classical mechanics". European Journal of Physics. 27 (5): 1241–1250. arXiv:hep-th/0605061. Bibcode:2006EJPh...27.1241P. doi:10.1088/0143-0807/27/5/023. S2CID 2895311.

fnal.gov

freakonomics.com

harvard.edu

ui.adsabs.harvard.edu

lizalzonaart.com

mit.edu

web.mit.edu

  • Kaiser, David (2005). "Physics and Feynman's Diagrams" (PDF). American Scientist. 93 (2): 156. doi:10.1511/2005.52.957. Archived (PDF) from the original on 2012-05-27.

phdcomics.com

quantamagazine.org

sciencenews.org

semanticscholar.org

api.semanticscholar.org

symmetrymagazine.org

theatlantic.com

web.archive.org

  • Kaiser, David (2005). "Physics and Feynman's Diagrams" (PDF). American Scientist. 93 (2): 156. doi:10.1511/2005.52.957. Archived (PDF) from the original on 2012-05-27.
  • Feynman, Richard (1949). "The Theory of Positrons". Physical Review. 76 (6): 749–759. Bibcode:1949PhRv...76..749F. doi:10.1103/PhysRev.76.749. S2CID 120117564. Archived from the original on 2022-08-09. Retrieved 2021-11-12. In this solution, the 'negative energy states' appear in a form which may be pictured (as by Stückelberg) in space-time as waves traveling away from the external potential backwards in time. Experimentally, such a wave corresponds to a positron approaching the potential and annihilating the electron.
  • Gerardus 't Hooft, Martinus Veltman, Diagrammar, CERN Yellow Report 1973, reprinted in G. 't Hooft, Under the Spell of Gauge Principle (World Scientific, Singapore, 1994), Introduction online Archived 2005-03-19 at the Wayback Machine

youtube.com