Floating-point arithmetic (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Floating-point arithmetic" in English language version.

refsWebsite
Global rank English rank
1st place
1st place
580th place
462nd place
2nd place
2nd place
3rd place
3rd place
11th place
8th place
1,475th place
1,188th place
383rd place
320th place
69th place
59th place
70th place
63rd place
4,773rd place
3,130th place
low place
low place
2,503rd place
1,760th place
6th place
6th place
low place
low place
4,878th place
4,120th place
low place
low place
4,153rd place
2,291st place
low place
low place
1,185th place
840th place
low place
9,452nd place
153rd place
151st place
4,643rd place
2,973rd place
low place
low place
low place
low place
low place
low place
low place
low place
207th place
136th place
low place
low place
155th place
138th place
1,343rd place
1,354th place
1,514th place
1,024th place
800th place
676th place
1,118th place
825th place
low place
low place
5th place
5th place
2,232nd place
1,903rd place
2,954th place
1,848th place
1,266th place
860th place
1,174th place
773rd place
low place
low place
low place
9,807th place
low place
7,917th place

accu.org

acm.org

dl.acm.org

archive.org

arm.com

infocenter.arm.com

arxiv.org

  • Rojas, Raúl (2014-06-07). "The Z1: Architecture and Algorithms of Konrad Zuse's First Computer". arXiv:1406.1886 [cs.AR].
  • Micikevicius, Paulius; Stosic, Dusan; Burgess, Neil; Cornea, Marius; Dubey, Pradeep; Grisenthwaite, Richard; Ha, Sangwon; Heinecke, Alexander; Judd, Patrick; Kamalu, John; Mellempudi, Naveen; Oberman, Stuart; Shoeybi, Mohammad; Siu, Michael; Wu, Hao (2022-09-12). "FP8 Formats for Deep Learning". arXiv:2209.05433 [cs.LG].
  • Lemire, Daniel (2021-03-22). "Number parsing at a gigabyte per second". Software: Practice and Experience. 51 (8): 1700–1727. arXiv:2101.11408. doi:10.1002/spe.2984. S2CID 231718830.

berkeley.edu

people.eecs.berkeley.edu

betaarchive.com

bitsavers.org

  • Lazarus, Roger B. (1957-01-30) [1956-10-01]. "MANIAC II" (PDF). Los Alamos, NM, USA: Los Alamos Scientific Laboratory of the University of California. p. 14. LA-2083. Archived (PDF) from the original on 2018-08-07. Retrieved 2018-08-07. […] the Maniac's floating base, which is 216 = 65,536. […] The Maniac's large base permits a considerable increase in the speed of floating point arithmetic. Although such a large base implies the possibility of as many as 15 lead zeros, the large word size of 48 bits guarantees adequate significance. […]

books.google.com

  • Muller, Jean-Michel; Brisebarre, Nicolas; de Dinechin, Florent; Jeannerod, Claude-Pierre; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Stehlé, Damien; Torres, Serge (2010). Handbook of Floating-Point Arithmetic (1st ed.). Birkhäuser. doi:10.1007/978-0-8176-4705-6. ISBN 978-0-8176-4704-9. LCCN 2009939668.
  • Parkinson, Roger (2000-12-07). "Chapter 2 - High resolution digital site survey systems - Chapter 2.1 - Digital field recording systems". High Resolution Site Surveys (1st ed.). CRC Press. p. 24. ISBN 978-0-20318604-6. Retrieved 2019-08-18. […] Systems such as the [Digital Field System] DFS IV and DFS V were quaternary floating-point systems and used gain steps of 12 dB. […] (256 pages)
  • Ronald T. Kneusel. Numbers and Computers, Springer, pp. 84–85, 2017. ISBN 978-3319505084
  • Wilkinson, James Hardy (2003-09-08). "Error Analysis". In Ralston, Anthony; Reilly, Edwin D.; Hemmendinger, David (eds.). Encyclopedia of Computer Science. Wiley. pp. 669–674. ISBN 978-0-470-86412-8. Retrieved 2013-05-14.
  • Einarsson, Bo (2005). Accuracy and reliability in scientific computing. Society for Industrial and Applied Mathematics (SIAM). pp. 50–. ISBN 978-0-89871-815-7. Retrieved 2013-05-14.
  • Higham, Nicholas John (2002). Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied Mathematics (SIAM). pp. 27–28, 110–123, 493. ISBN 978-0-89871-521-7. 0-89871-355-2.
  • Oliveira, Suely; Stewart, David E. (2006-09-07). Writing Scientific Software: A Guide to Good Style. Cambridge University Press. pp. 10–. ISBN 978-1-139-45862-7.

christophervickery.com

doi.org

drive.google.com

dspguide.com

ed-thelen.org

embarcadero.com

community.embarcadero.com

  • Borland staff (1998-07-02) [1994-03-10]. "Converting between Microsoft Binary and IEEE formats". Technical Information Database (TI1431C.txt). Embarcadero USA / Inprise (originally: Borland). ID 1400. Archived from the original on 2019-02-20. Retrieved 2016-05-30. […] _fmsbintoieee(float *src4, float *dest4) […] MS Binary Format […] byte order => m3 | m2 | m1 | exponent […] m1 is most significant byte => sbbb|bbbb […] m3 is the least significant byte […] m = mantissa byte […] s = sign bit […] b = bit […] MBF is bias 128 and IEEE is bias 127. […] MBF places the decimal point before the assumed bit, while IEEE places the decimal point after the assumed bit. […] ieee_exp = msbin[3] - 2; /* actually, msbin[3]-1-128+127 */ […] _dmsbintoieee(double *src8, double *dest8) […] MS Binary Format […] byte order => m7 | m6 | m5 | m4 | m3 | m2 | m1 | exponent […] m1 is most significant byte => smmm|mmmm […] m7 is the least significant byte […] MBF is bias 128 and IEEE is bias 1023. […] MBF places the decimal point before the assumed bit, while IEEE places the decimal point after the assumed bit. […] ieee_exp = msbin[7] - 128 - 1 + 1023; […]

espacenet.com

worldwide.espacenet.com

  • US patent 3037701A, Huberto M Sierra, "Floating decimal point arithmetic control means for calculator", issued 1962-06-05 

gao.gov

github.com

gnu.org

gcc.gnu.org

intel.com

  • "D.3.2.1". Intel 64 and IA-32 Architectures Software Developers' Manuals. Vol. 1.

llvm.org

loc.gov

lccn.loc.gov

  • Muller, Jean-Michel; Brisebarre, Nicolas; de Dinechin, Florent; Jeannerod, Claude-Pierre; Lefèvre, Vincent; Melquiond, Guillaume; Revol, Nathalie; Stehlé, Damien; Torres, Serge (2010). Handbook of Floating-Point Arithmetic (1st ed.). Birkhäuser. doi:10.1007/978-0-8176-4705-6. ISBN 978-0-8176-4704-9. LCCN 2009939668.
  • Beebe, Nelson H. F. (2017-08-22). "Chapter H. Historical floating-point architectures". The Mathematical-Function Computation Handbook - Programming Using the MathCW Portable Software Library (1st ed.). Salt Lake City, UT, USA: Springer International Publishing AG. p. 948. doi:10.1007/978-3-319-64110-2. ISBN 978-3-319-64109-6. LCCN 2017947446. S2CID 30244721.

microsoft.com

learn.microsoft.com

netlib.org

  • Gay, David M. (1990). Correctly Rounded Binary-Decimal and Decimal-Binary Conversions (Technical report). NUMERICAL ANALYSIS MANUSCRIPT 90-10, AT&T BELL LABORATORIES. CiteSeerX 10.1.1.31.4049. (dtoa.c in netlab)

nvidia.com

blogs.nvidia.com

developer.nvidia.com

nyu.edu

cims.nyu.edu

openexr.com

oracle.com

docs.oracle.com

pagetable.com

perl.org

perldoc.perl.org

psu.edu

citeseerx.ist.psu.edu

  • Gay, David M. (1990). Correctly Rounded Binary-Decimal and Decimal-Binary Conversions (Technical report). NUMERICAL ANALYSIS MANUSCRIPT 90-10, AT&T BELL LABORATORIES. CiteSeerX 10.1.1.31.4049. (dtoa.c in netlab)

python.org

quadibloc.com

quickclick.es

semanticscholar.org

api.semanticscholar.org

speleotrove.com

stackoverflow.com

tufts.edu

cs.tufts.edu

umn.edu

www-users.cse.umn.edu

uni-jena.de

users.fmi.uni-jena.de

web.archive.org

worldcat.org

search.worldcat.org