Analysis of information sources in references of the Wikipedia article "Floating-point arithmetic" in English language version.
Far more worrying is cancellation error which can yield catastrophic loss of precision.[4]
[…] the Maniac's floating base, which is 216 = 65,536. […] The Maniac's large base permits a considerable increase in the speed of floating point arithmetic. Although such a large base implies the possibility of as many as 15 lead zeros, the large word size of 48 bits guarantees adequate significance. […]
[…] Systems such as the [Digital Field System] DFS IV and DFS V were quaternary floating-point systems and used gain steps of 12 dB. […](256 pages)
[…] _fmsbintoieee(float *src4, float *dest4) […] MS Binary Format […] byte order => m3 | m2 | m1 | exponent […] m1 is most significant byte => sbbb|bbbb […] m3 is the least significant byte […] m = mantissa byte […] s = sign bit […] b = bit […] MBF is bias 128 and IEEE is bias 127. […] MBF places the decimal point before the assumed bit, while IEEE places the decimal point after the assumed bit. […] ieee_exp = msbin[3] - 2; /* actually, msbin[3]-1-128+127 */ […] _dmsbintoieee(double *src8, double *dest8) […] MS Binary Format […] byte order => m7 | m6 | m5 | m4 | m3 | m2 | m1 | exponent […] m1 is most significant byte => smmm|mmmm […] m7 is the least significant byte […] MBF is bias 128 and IEEE is bias 1023. […] MBF places the decimal point before the assumed bit, while IEEE places the decimal point after the assumed bit. […] ieee_exp = msbin[7] - 128 - 1 + 1023; […]
We support floating point reduction operations when -ffast-math is used.
Since the IEEE-754 floating-point specification does not define a 16-bit format, ILM created the "half" format. Half values have 1 sign bit, 5 exponent bits, and 10 mantissa bits.
[…] the Maniac's floating base, which is 216 = 65,536. […] The Maniac's large base permits a considerable increase in the speed of floating point arithmetic. Although such a large base implies the possibility of as many as 15 lead zeros, the large word size of 48 bits guarantees adequate significance. […]
Since the IEEE-754 floating-point specification does not define a 16-bit format, ILM created the "half" format. Half values have 1 sign bit, 5 exponent bits, and 10 mantissa bits.
[…] _fmsbintoieee(float *src4, float *dest4) […] MS Binary Format […] byte order => m3 | m2 | m1 | exponent […] m1 is most significant byte => sbbb|bbbb […] m3 is the least significant byte […] m = mantissa byte […] s = sign bit […] b = bit […] MBF is bias 128 and IEEE is bias 127. […] MBF places the decimal point before the assumed bit, while IEEE places the decimal point after the assumed bit. […] ieee_exp = msbin[3] - 2; /* actually, msbin[3]-1-128+127 */ […] _dmsbintoieee(double *src8, double *dest8) […] MS Binary Format […] byte order => m7 | m6 | m5 | m4 | m3 | m2 | m1 | exponent […] m1 is most significant byte => smmm|mmmm […] m7 is the least significant byte […] MBF is bias 128 and IEEE is bias 1023. […] MBF places the decimal point before the assumed bit, while IEEE places the decimal point after the assumed bit. […] ieee_exp = msbin[7] - 128 - 1 + 1023; […]
Far more worrying is cancellation error which can yield catastrophic loss of precision.[4]