Gallai–Hasse–Roy–Vitaver theorem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Gallai–Hasse–Roy–Vitaver theorem" in English language version.

refsWebsite
Global rank English rank
451st place
277th place
2nd place
2nd place
11th place
8th place
3rd place
3rd place
69th place
59th place
8,783rd place
low place
26th place
20th place
8,650th place
7,668th place
low place
low place

ams.org

mathscinet.ams.org

  • Hsu, Lih-Hsing; Lin, Cheng-Kuan (2009), "Theorem 8.5", Graph Theory and Interconnection Networks, Boca Raton, Florida: CRC Press, pp. 129–130, ISBN 978-1-4200-4481-2, MR 2454502
  • Nešetřil, Jaroslav; Ossona de Mendez, Patrice (2012), "Section 3.7: Homomorphisms", Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, vol. 28, Heidelberg: Springer, pp. 39–46, doi:10.1007/978-3-642-27875-4, ISBN 978-3-642-27874-7, MR 2920058; see especially Theorem 3.13, p. 42
  • Chartrand, Gary; Zhang, Ping (2009), "Theorem 7.17 (The Gallai–Roy–Vitaver Theorem)", Chromatic Graph Theory, Discrete Mathematics and its Applications, Boca Raton, Florida: CRC Press, ISBN 978-1-58488-800-0, MR 2450569
  • Li, Hao (2001), "A generalization of the Gallai–Roy theorem", Graphs and Combinatorics, 17 (4): 681–685, doi:10.1007/PL00007256, MR 1876576, S2CID 37646065
  • Chang, Gerard J.; Tong, Li-Da; Yan, Jing-Ho; Yeh, Hong-Gwa (2002), "A note on the Gallai–Roy–Vitaver theorem", Discrete Mathematics, 256 (1–2): 441–444, doi:10.1016/S0012-365X(02)00386-2, MR 1927565
  • Guzmán-Pro, Santiago; Hernández-Cruz, César (2022), "Oriented expressions of graph properties", European Journal of Combinatorics, 105, Paper No. 103567, arXiv:2012.12811, doi:10.1016/j.ejc.2022.103567, MR 4432176, S2CID 229363421
  • Матиясевич, Ю. В. (1974), "Одна схема доказательств в дискретной математике" [A certain scheme for proofs in discrete mathematics], Исследования по конструктивной математике и математической логике [Studies in constructive mathematics and mathematical logic. Part VI. Dedicated to A. A. Markov on the occasion of his 70th birthday], Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI) (in Russian), vol. 40, pp. 94–100, MR 0363823
  • Nešetřil, Jaroslav; Tardif, Claude (2008), "A dualistic approach to bounding the chromatic number of a graph", European Journal of Combinatorics, 29 (1): 254–260, doi:10.1016/j.ejc.2003.09.024, MR 2368632
  • Hasse, Maria (1965), "Zur algebraischen Begründung der Graphentheorie. I", Mathematische Nachrichten (in German), 28 (5–6): 275–290, doi:10.1002/mana.19650280503, MR 0179105
  • Roy, B. (1967), "Nombre chromatique et plus longs chemins d'un graphe" (PDF), Rev. Française Informat. Recherche Opérationnelle (in French), 1 (5): 129–132, doi:10.1051/m2an/1967010501291, MR 0225683
  • Витавер, Л. М. (1962), "Нахождение минимальных раскрасок вершин графа с помощью булевых степеней матрицы смежностей [Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix]", Doklady Akademii Nauk SSSR (in Russian), 147: 758–759, MR 0145509
  • Gutin, G. (1994), "Minimizing and maximizing the diameter in orientations of graphs", Graphs and Combinatorics, 10 (3): 225–230, doi:10.1007/BF02986669, MR 1304376, S2CID 2453716
  • Bondy, J. A. (2003), "Short proofs of classical theorems", Journal of Graph Theory, 44 (3): 159–165, doi:10.1002/jgt.10135, MR 2012799, S2CID 2174153

arxiv.org

books.google.com

  • Hsu, Lih-Hsing; Lin, Cheng-Kuan (2009), "Theorem 8.5", Graph Theory and Interconnection Networks, Boca Raton, Florida: CRC Press, pp. 129–130, ISBN 978-1-4200-4481-2, MR 2454502
  • Chartrand, Gary; Zhang, Ping (2009), "Theorem 7.17 (The Gallai–Roy–Vitaver Theorem)", Chromatic Graph Theory, Discrete Mathematics and its Applications, Boca Raton, Florida: CRC Press, ISBN 978-1-58488-800-0, MR 2450569

doi.org

grenoble-inp.fr

oc.g-scop.grenoble-inp.fr

  • Havet, Frédéric (2013), "Section 3.1: Gallai–Roy Theorem and related results", Orientations and colouring of graphs (PDF), Lecture notes for the summer school SGT 2013 in Oléron, France, pp. 15–19

jstor.org

mathnet.ru

numdam.org

archive.numdam.org

semanticscholar.org

api.semanticscholar.org