Generalized chi-squared distribution (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Generalized chi-squared distribution" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
26th place
20th place
69th place
59th place
3,510th place
2,263rd place
3,588th place
3,072nd place

arxiv.org

  • Das, Abhranil (2024). "New methods to compute the generalized chi-square distribution". arXiv:2404.05062 [stat.CO].
  • Das, Abhranil; Wilson S Geisler (2020). "Methods to integrate multinormals and compute classification measures". arXiv:2012.14331 [stat.ML].

diva-portal.org

kth.diva-portal.org

doi.org

  • Davies, R. B. (1973). "Numerical inversion of a characteristic function". Biometrika. 60 (2): 415–417. doi:10.1093/biomet/60.2.415.
  • Davies, R. B. (1980). "Algorithm AS155: The distribution of a linear combination of χ2 random variables". Journal of the Royal Statistical Society. Series C (Applied Statistics). 29 (3): 323–333. doi:10.2307/2346911. JSTOR 2346911.
  • Jones, D. A. (1983). "Statistical analysis of empirical models fitted by optimisation". Biometrika. 70 (1): 67–88. doi:10.1093/biomet/70.1.67.
  • Sheil, J.; O'Muircheartaigh, I. (1977). "Algorithm AS106: The distribution of non-negative quadratic forms in normal variables". Journal of the Royal Statistical Society. Series C (Applied Statistics). 26 (1): 92–98. doi:10.2307/2346884. JSTOR 2346884.
  • Ruben, Harold (1962). "Probability content of regions under spherical normal distributions, IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables". The Annals of Mathematical Statistics. 33 (2): 542-570. doi:10.1214/aoms/1177704580.
  • Imhof, J. P. (1961). "Computing the Distribution of Quadratic Forms in Normal Variables" (PDF). Biometrika. 48 (3/4): 419–426. doi:10.2307/2332763. JSTOR 2332763.

jstor.org

rero.ch

doc.rero.ch