Analysis of information sources in references of the Wikipedia article "Genetic history of Italy" in English language version.
{{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link)Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them. ... In the Medieval and early modern periods (n = 28 individuals), we observe an ancestry shift toward central and northern Europe in PCA (Fig. 3E), as well as a further increase in the European cluster (C7) and loss of the Near Eastern and eastern Mediterranean clusters (C4 and C5) in ChromoPainter (Fig. 4C). The Medieval population is roughly centered on modern-day central Italians (Fig. 3F). It can be modeled as a two-way combination of Rome's Late Antique population and a European donor population, with potential sources including many ancient and modern populations in central and northern Europe: Lombards from Hungary, Saxons from England, and Vikings from Sweden, among others (table S26).
The genetic contribution of Greek chromosomes to the Sicilian gene pool is estimated to be about 37% whereas the contribution of North African populations is estimated to be around 6%.
Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them.
As a matter of fact, while the presence of J2a-M67* suggests contacts by sea with Anatolian people, in agreement with the Herodotus hypothesis of an external Anatolian source of Etruscans, the finding of the Central European lineage G2a-L497 at considerable frequency would rather support a Northern European origin of Etruscans. On the other hand, the high incidence of European R1b lineages cannot rule out the scenario of an autochthonous process of formation of the Etruscan civilization from the preceding Villanovan society, as first suggested by Dionysius of Halicarnassus; a detailed analysis of haplogroup R1b-U152 could prove very informative in this regard.
The Grotta La Sassa (National Cave Cadastre id: LA 2001) was discovered in 2015 during a survey of the Ausoni Mountains natural caves carried out by two speleological groups: Gruppo Grotte Castelli Romani and Speleo Club Roma. (...) At La Sassa, the two males LSC002/004 and LSC011 have an identical Ychr haplotype (J2a-M410/J2a7-Z2397; Table 1; Data S1B and S1F)
4/138=2.9% in Latium; 3/114=2.6% in Volterra; 2/92=2.2% in Basilicata and 3/154=2.0% in Sicily
Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them. ... In the Medieval and early modern periods (n = 28 individuals), we observe an ancestry shift toward central and northern Europe in PCA (Fig. 3E), as well as a further increase in the European cluster (C7) and loss of the Near Eastern and eastern Mediterranean clusters (C4 and C5) in ChromoPainter (Fig. 4C). The Medieval population is roughly centered on modern-day central Italians (Fig. 3F). It can be modeled as a two-way combination of Rome's Late Antique population and a European donor population, with potential sources including many ancient and modern populations in central and northern Europe: Lombards from Hungary, Saxons from England, and Vikings from Sweden, among others (table S26).
Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them.
The Grotta La Sassa (National Cave Cadastre id: LA 2001) was discovered in 2015 during a survey of the Ausoni Mountains natural caves carried out by two speleological groups: Gruppo Grotte Castelli Romani and Speleo Club Roma. (...) At La Sassa, the two males LSC002/004 and LSC011 have an identical Ychr haplotype (J2a-M410/J2a7-Z2397; Table 1; Data S1B and S1F)
Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them. ... In the Medieval and early modern periods (n = 28 individuals), we observe an ancestry shift toward central and northern Europe in PCA (Fig. 3E), as well as a further increase in the European cluster (C7) and loss of the Near Eastern and eastern Mediterranean clusters (C4 and C5) in ChromoPainter (Fig. 4C). The Medieval population is roughly centered on modern-day central Italians (Fig. 3F). It can be modeled as a two-way combination of Rome's Late Antique population and a European donor population, with potential sources including many ancient and modern populations in central and northern Europe: Lombards from Hungary, Saxons from England, and Vikings from Sweden, among others (table S26).
Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them.
The Grotta La Sassa (National Cave Cadastre id: LA 2001) was discovered in 2015 during a survey of the Ausoni Mountains natural caves carried out by two speleological groups: Gruppo Grotte Castelli Romani and Speleo Club Roma. (...) At La Sassa, the two males LSC002/004 and LSC011 have an identical Ychr haplotype (J2a-M410/J2a7-Z2397; Table 1; Data S1B and S1F)
{{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link)Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them. ... In the Medieval and early modern periods (n = 28 individuals), we observe an ancestry shift toward central and northern Europe in PCA (Fig. 3E), as well as a further increase in the European cluster (C7) and loss of the Near Eastern and eastern Mediterranean clusters (C4 and C5) in ChromoPainter (Fig. 4C). The Medieval population is roughly centered on modern-day central Italians (Fig. 3F). It can be modeled as a two-way combination of Rome's Late Antique population and a European donor population, with potential sources including many ancient and modern populations in central and northern Europe: Lombards from Hungary, Saxons from England, and Vikings from Sweden, among others (table S26).
The genetic contribution of Greek chromosomes to the Sicilian gene pool is estimated to be about 37% whereas the contribution of North African populations is estimated to be around 6%.
Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them.
As a matter of fact, while the presence of J2a-M67* suggests contacts by sea with Anatolian people, in agreement with the Herodotus hypothesis of an external Anatolian source of Etruscans, the finding of the Central European lineage G2a-L497 at considerable frequency would rather support a Northern European origin of Etruscans. On the other hand, the high incidence of European R1b lineages cannot rule out the scenario of an autochthonous process of formation of the Etruscan civilization from the preceding Villanovan society, as first suggested by Dionysius of Halicarnassus; a detailed analysis of haplogroup R1b-U152 could prove very informative in this regard.
The Grotta La Sassa (National Cave Cadastre id: LA 2001) was discovered in 2015 during a survey of the Ausoni Mountains natural caves carried out by two speleological groups: Gruppo Grotte Castelli Romani and Speleo Club Roma. (...) At La Sassa, the two males LSC002/004 and LSC011 have an identical Ychr haplotype (J2a-M410/J2a7-Z2397; Table 1; Data S1B and S1F)
4/138=2.9% in Latium; 3/114=2.6% in Volterra; 2/92=2.2% in Basilicata and 3/154=2.0% in Sicily
{{cite journal}}
: CS1 maint: DOI inactive as of December 2024 (link)Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them. ... In the Medieval and early modern periods (n = 28 individuals), we observe an ancestry shift toward central and northern Europe in PCA (Fig. 3E), as well as a further increase in the European cluster (C7) and loss of the Near Eastern and eastern Mediterranean clusters (C4 and C5) in ChromoPainter (Fig. 4C). The Medieval population is roughly centered on modern-day central Italians (Fig. 3F). It can be modeled as a two-way combination of Rome's Late Antique population and a European donor population, with potential sources including many ancient and modern populations in central and northern Europe: Lombards from Hungary, Saxons from England, and Vikings from Sweden, among others (table S26).
The genetic contribution of Greek chromosomes to the Sicilian gene pool is estimated to be about 37% whereas the contribution of North African populations is estimated to be around 6%.
Interestingly, although Iron Age individuals were sampled from both Etruscan (n=3) and Latin (n=6) contexts, we did not detect any significant differences between the two groups with f4 statistics in the form of f4(RMPR_Etruscan, RMPR_Latin; test population, Onge), suggesting shared origins or extensive genetic exchange between them.
4/138=2.9% in Latium; 3/114=2.6% in Volterra; 2/92=2.2% in Basilicata and 3/154=2.0% in Sicily
As a matter of fact, while the presence of J2a-M67* suggests contacts by sea with Anatolian people, in agreement with the Herodotus hypothesis of an external Anatolian source of Etruscans, the finding of the Central European lineage G2a-L497 at considerable frequency would rather support a Northern European origin of Etruscans. On the other hand, the high incidence of European R1b lineages cannot rule out the scenario of an autochthonous process of formation of the Etruscan civilization from the preceding Villanovan society, as first suggested by Dionysius of Halicarnassus; a detailed analysis of haplogroup R1b-U152 could prove very informative in this regard.
The Grotta La Sassa (National Cave Cadastre id: LA 2001) was discovered in 2015 during a survey of the Ausoni Mountains natural caves carried out by two speleological groups: Gruppo Grotte Castelli Romani and Speleo Club Roma. (...) At La Sassa, the two males LSC002/004 and LSC011 have an identical Ychr haplotype (J2a-M410/J2a7-Z2397; Table 1; Data S1B and S1F)
The Grotta La Sassa (National Cave Cadastre id: LA 2001) was discovered in 2015 during a survey of the Ausoni Mountains natural caves carried out by two speleological groups: Gruppo Grotte Castelli Romani and Speleo Club Roma. (...) At La Sassa, the two males LSC002/004 and LSC011 have an identical Ychr haplotype (J2a-M410/J2a7-Z2397; Table 1; Data S1B and S1F)