Huang, Hua-Lin; Liu, Gongxiang; Ye, Yu (2014). "The braided monoidal structures on a class of linear Gr-categories". Algebras and Representation Theory. 17 (4): 1249–1265. arXiv:1206.5402. doi:10.1007/s10468-013-9445-8. MR3228486. See Proposition 2.3.
Huang, Hua-Lin; Liu, Gongxiang; Ye, Yu (2014). "The braided monoidal structures on a class of linear Gr-categories". Algebras and Representation Theory. 17 (4): 1249–1265. arXiv:1206.5402. doi:10.1007/s10468-013-9445-8. MR3228486. See Proposition 2.3.
Huang, Hua-Lin; Liu, Gongxiang; Ye, Yu (2014). "The braided monoidal structures on a class of linear Gr-categories". Algebras and Representation Theory. 17 (4): 1249–1265. arXiv:1206.5402. doi:10.1007/s10468-013-9445-8. MR3228486. See Proposition 2.3.
Dummit, David Steven; Foote, Richard M. (14 July 2003). Abstract algebra (Third ed.). Hoboken, NJ: John Wiley & Sons. p. 801. ISBN0-471-43334-9. OCLC52559229.
Brown, Kenneth S. (6 December 2012). Cohomology of groups. Graduate Texts in Mathematics. Vol. 87. New York, New York: Springer. p. 35. ISBN978-1-4684-9327-6. OCLC853269200.
For example, the two are isomorphic if all primes p such that G has p-torsion are invertible in k. See (Knudson 2001), Theorem A.1.19 for the precise statement. Knudson, Kevin P. (2001), Homology of Linear Groups, Progress in Mathematics, vol. 193, Birkhäuser Verlag, Zbl0997.20045