Guide star (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Guide star" in English language version.

refsWebsite
Global rank English rank
1st place
1st place
3,034th place
2,650th place
6,750th place
5,140th place

eso.org

  • "GALACSI". eso.org. ESO. Archived from the original on 2024-02-13. Retrieved 2024-08-03.
  • "Announcement. GALACSI Adaptive Optics System Ready to be Mounted on the VLT. The VLT's MUSE will soon be able to see even more clearly". eso.org. ESO. Archived from the original on 2024-07-20. Retrieved 2024-08-03. GALACSI will rely on 4 sodium lasers launched from the centre piece of one of the Unit Telescopes of the VLT to produce "artificial stars", known as guide stars. Sensors then follow the motion of these guide stars as the light from them flickers in the turbulent atmosphere. That allows a computer to calculate the correction that must be applied to the telescope's deformable secondary mirror (itself a new addition to the VLT) to compensate for the atmospheric disturbance. In this way, extremely sharp images of the real celestial objects can be obtained.

llnl.gov

web.archive.org

  • "GALACSI". eso.org. ESO. Archived from the original on 2024-02-13. Retrieved 2024-08-03.
  • "Announcement. GALACSI Adaptive Optics System Ready to be Mounted on the VLT. The VLT's MUSE will soon be able to see even more clearly". eso.org. ESO. Archived from the original on 2024-07-20. Retrieved 2024-08-03. GALACSI will rely on 4 sodium lasers launched from the centre piece of one of the Unit Telescopes of the VLT to produce "artificial stars", known as guide stars. Sensors then follow the motion of these guide stars as the light from them flickers in the turbulent atmosphere. That allows a computer to calculate the correction that must be applied to the telescope's deformable secondary mirror (itself a new addition to the VLT) to compensate for the atmospheric disturbance. In this way, extremely sharp images of the real celestial objects can be obtained.
  • Heller, Arnie (2002-06-12). "Science and Technology Review: Adaptive Optics Sharpen the View from Earth. Blur free imagereveal a wealth of astronomical detail". Lawrence Livermore National Laboratory. Archived from the original on 2017-02-09. Retrieved 2024-08-03. The dye laser, similar to that pioneered at Livermore for its Atomic Vapor Laser Isotope Separation program, creates a glowing star of sodium atoms measuring less than 1 meter in diameter at an altitude of about 100 kilometers above Earth's surface. This artificial reference can be created as close to the astronomical target as desired so that the light from the laser star and the observed object pass through the same small part of the atmosphere.