Gurney flap (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Gurney flap" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
7,940th place
5,176th place
low place
low place
18th place
17th place
low place
low place
6th place
6th place
75th place
83rd place
621st place
380th place
11th place
8th place
low place
low place
low place
6,237th place
1st place
1st place
low place
low place
low place
low place

aiaa.org

pdf.aiaa.org

arc.aiaa.org

allamericanracers.com

  • "The Gurney Flap – Dan Gurney's All American Racers". allamericanracers.com. Retrieved 23 April 2018.
  • Howard, Keith (September 2000). "Gurney Flap". Motor Sport Magazine. Once Gurney had confirmed they were alone, Unser told him the rear was now so well planted that the car was pushing (understeering) badly, hence the poor lap times.

archive.org

automatters.net

calpoly.edu

digitalcommons.calpoly.edu

csa.com

defensedaily.com

  • Prouty, R. W. (2000-03-01). "Aerodynamics : The Gurney Flap, Part 2". Rotor & Wing. Access Intelligence. One of the critical flight conditions is a high-powered climb. The negative angle of attack of the horizontal stabilizer can be as high as −25°, whereas in autorotation it may be +15°.

doi.org

  • Van Dam, C. P.; Yen, D. T.; Vijgen, P. (1999). "Gurney flap experiments on airfoil and wings". Journal of Aircraft. 36 (2): 484–486. doi:10.2514/2.2461. These devices provided an increased region of attached flow on a wing upper surface relative to the wing without the flaps.
  • Storms, B. L.; Jang, C. S. (1994). "Lift Enhancement of an Airfoil Using a Gurney Flap and Vortex Generators". Journal of Aircraft. 31 (3): 542–547. doi:10.2514/3.46528. One candidate technology is the Gurney flap, which consists of a small plate, on the order of 1–2% of the airfoil chord in height, located at the trailing edge perpendicular to the pressure side of the airfoil.
  • Myose, R.; Papadakis, M.; Heron, I. (1998). "Gurney flap experiments on airfoils, wings, and reflection plane model". Journal of Aircraft. 35 (2): 206–211. doi:10.2514/2.2309. Race-car driver Dan Gurney used this flap to increase the downforce and, thus, the traction and potential cornering speeds generated by the inverted wings on his race cars.
  • Troolin, D. R.; Longmire, E. K.; Lai, W. T. (2006). "Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap". Experiments in Fluids. 41 (2): 241–254. Bibcode:2006ExFl...41..241T. doi:10.1007/s00348-006-0143-8. S2CID 53316694. ...the intermittent shedding of fluid recirculating in the cavity upstream of the flap, becomes more coherent with increasing angle of attack.... Comparison of flow around 'filled' and 'open' flap configurations suggested that [this] was responsible for a significant portion of the overall lift increment.
  • Jang, C. S.; Ross, J. C.; Cummings, R. M. (1998). "Numerical investigation of an airfoil with a Gurney flap". Aircraft Design. 1 (2): 75–88. doi:10.1016/S1369-8869(98)00010-X. Retrieved 2007-07-06. Liebeck stated that race car testing by Dan Gurney showed that the vehicle had increased cornering and straight-away speeds when the flap was installed on the rear wing.
  • Myose, R.; Heron, I.; Papadakis, M. (1996). "Effect of Gurney flaps on a NACA 0011 Airfoil". AIAA Paper: 96–0059. doi:10.4271/961316. Retrieved 2007-07-08. Liebeck conducted wind tunnel tests on the effect of a 1.25% chord height Gurney flap. He used a Newman-type airfoil, which had an elliptic nose and a straight line wedge for the rear section.[permanent dead link]
  • Schatz, M.; Gunther, B.; Thiele, F. (2004). "Computational Modeling of the Unsteady Wake Behind Gurney Flaps". AIAA Paper. 2417. doi:10.2514/6.2004-2417. ISBN 978-1-62410-030-7. The first theoretical investigations were published by Liebeck who introduced the concept of trailing edge devices to aircraft aerodynamics.
  • Zerihan, J.; Zhang, X. (2001). "Aerodynamics of Gurney flaps on a wing in ground effect". AIAA Journal. 39 (5): 772–780. Bibcode:2001AIAAJ..39..772Z. doi:10.2514/2.1396. Retrieved 2007-07-07.[permanent dead link]
  • Bloy, A. W.; Tsioumanis, N.; Mellor, N. T. (1997). "Enhanced aerofoil performance using small trailing-edge flaps". Journal of Aircraft. 34 (4): 569–571. doi:10.2514/2.2210.
  • Giguere, P.; Dumas, G.; Lemay, J. (1997). "Technical Notes". AIAA Journal. 35: 12. doi:10.2514/2.49. Retrieved 2007-07-07.
  • Meyer, R.; Hage, W.; Bechert, D. W. (2006). "Drag Reduction on Gurney Flaps by Three-Dimensional Modification". Journal of Aircraft. 43 (1): 132. doi:10.2514/1.14294. When hot-wire anemometry is used, a tonal component in the spectrum of the velocity fluctuations downstream of the Gurney flap is shown. This points to the existence of a von Kármán vortex street.

formula1-dictionary.net

  • SEAS. "Gurney Flap". www.formula1-dictionary.net. Retrieved 23 April 2018.

harvard.edu

ui.adsabs.harvard.edu

nasa.gov

ntrs.nasa.gov

semanticscholar.org

api.semanticscholar.org

  • Troolin, D. R.; Longmire, E. K.; Lai, W. T. (2006). "Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap". Experiments in Fluids. 41 (2): 241–254. Bibcode:2006ExFl...41..241T. doi:10.1007/s00348-006-0143-8. S2CID 53316694. ...the intermittent shedding of fluid recirculating in the cavity upstream of the flap, becomes more coherent with increasing angle of attack.... Comparison of flow around 'filled' and 'open' flap configurations suggested that [this] was responsible for a significant portion of the overall lift increment.

web.archive.org

zenodo.org