Haar wavelet (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Haar wavelet" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
102nd place
76th place
3,863rd place
2,637th place
2,594th place
2,546th place
5th place
5th place
2,656th place
5,310th place
1,923rd place
1,068th place
1st place
1st place
low place
9,532nd place
low place
low place

doi.org

  • see p. 361 in Haar (1910). Haar, Alfréd (1910), "Zur Theorie der orthogonalen Funktionensysteme", Mathematische Annalen, 69 (3): 331–371, doi:10.1007/BF01456326, hdl:2027/uc1.b2619563, S2CID 120024038
  • Lee, B.; Tarng, Y. S. (1999). "Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current". International Journal of Advanced Manufacturing Technology. 15 (4): 238–243. doi:10.1007/s001700050062. S2CID 109908427.
  • As opposed to the preceding statement, this fact is not obvious: see p. 363 in Haar (1910). Haar, Alfréd (1910), "Zur Theorie der orthogonalen Funktionensysteme", Mathematische Annalen, 69 (3): 331–371, doi:10.1007/BF01456326, hdl:2027/uc1.b2619563, S2CID 120024038
  • Vidakovic, Brani (2010). Statistical Modeling by Wavelets. Wiley Series in Probability and Statistics (2 ed.). pp. 60, 63. doi:10.1002/9780470317020. ISBN 9780470317020.
  • p. 361 in Haar (1910) Haar, Alfréd (1910), "Zur Theorie der orthogonalen Funktionensysteme", Mathematische Annalen, 69 (3): 331–371, doi:10.1007/BF01456326, hdl:2027/uc1.b2619563, S2CID 120024038
  • Philip Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928), 522-529. doi:10.1007/BF01448860

encyclopediaofmath.org

handle.net

hdl.handle.net

hmc.edu

fourier.eng.hmc.edu

  • "haar". Fourier.eng.hmc.edu. 30 October 2013. Archived from the original on 21 August 2012. Retrieved 23 November 2013.

icm.edu.pl

matwbn.icm.edu.pl

semanticscholar.org

api.semanticscholar.org

  • see p. 361 in Haar (1910). Haar, Alfréd (1910), "Zur Theorie der orthogonalen Funktionensysteme", Mathematische Annalen, 69 (3): 331–371, doi:10.1007/BF01456326, hdl:2027/uc1.b2619563, S2CID 120024038
  • Lee, B.; Tarng, Y. S. (1999). "Application of the discrete wavelet transform to the monitoring of tool failure in end milling using the spindle motor current". International Journal of Advanced Manufacturing Technology. 15 (4): 238–243. doi:10.1007/s001700050062. S2CID 109908427.
  • As opposed to the preceding statement, this fact is not obvious: see p. 363 in Haar (1910). Haar, Alfréd (1910), "Zur Theorie der orthogonalen Funktionensysteme", Mathematische Annalen, 69 (3): 331–371, doi:10.1007/BF01456326, hdl:2027/uc1.b2619563, S2CID 120024038
  • p. 361 in Haar (1910) Haar, Alfréd (1910), "Zur Theorie der orthogonalen Funktionensysteme", Mathematische Annalen, 69 (3): 331–371, doi:10.1007/BF01456326, hdl:2027/uc1.b2619563, S2CID 120024038

sepstanford.edu

uni-goettingen.de

www-gdz.sub.uni-goettingen.de

resolver.sub.uni-goettingen.de

web.archive.org

  • "haar". Fourier.eng.hmc.edu. 30 October 2013. Archived from the original on 21 August 2012. Retrieved 23 November 2013.

worldcat.org

zbmath.org