Harborth's conjecture (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Harborth's conjecture" in English language version.

refsWebsite
Global rank English rank
451st place
277th place
2nd place
2nd place
3rd place
3rd place
low place
low place
11th place
8th place
low place
low place
207th place
136th place
69th place
59th place

ams.org

mathscinet.ams.org

  • Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN 9780486315522, MR 2047103. Reprint of 1994 Academic Press edition; the same name is given to the conjecture in the original 1990 edition.
  • Kemnitz, Arnfried; Harborth, Heiko (2001), "Plane integral drawings of planar graphs", Discrete Mathematics, Graph theory (Kazimierz Dolny, 1997), 236 (1–3): 191–195, doi:10.1016/S0012-365X(00)00442-8, MR 1830610. Kemnitz and Harborth credit the original publication of this conjecture to Harborth et al. (1987).
  • Harborth, Heiko; Kemnitz, Arnfried; Möller, Meinhard; Süssenbach, Andreas (1987), "Ganzzahlige planare Darstellungen der platonischen Körper", Elemente der Mathematik, 42 (5): 118–122, MR 0905393.
  • Brass, Peter; Moser, William O. J.; Pach, János (2005), Research Problems in Discrete Geometry, Springer, p. 250, ISBN 9780387299297, MR 2163782.
  • Almering, J. H. J. (1963), "Rational quadrilaterals", Indagationes Mathematicae, 25: 192–199, doi:10.1016/S1385-7258(63)50020-1, MR 0147447.
  • Berry, T. G. (1992), "Points at rational distance from the vertices of a triangle", Acta Arithmetica, 62 (4): 391–398, doi:10.4064/aa-62-4-391-398, MR 1199630.
  • Klee, Victor; Wagon, Stan (1991), "Problem 10: Does the plane contain a dense rational set?", Old and New Unsolved Problems in Plane Geometry and Number Theory, Dolciani mathematical expositions, vol. 11, Cambridge University Press, pp. 132–135, ISBN 978-0-88385-315-3, MR 1133201.
  • Geelen, Jim; Guo, Anjie; McKinnon, David (2008), "Straight line embeddings of cubic planar graphs with integer edge lengths", Journal of Graph Theory, 58 (3): 270–274, CiteSeerX 10.1.1.64.4523, doi:10.1002/jgt.20304, MR 2419522, S2CID 1856482.
  • Benediktovich, Vladimir I. (2013), "On rational approximation of a geometric graph", Discrete Mathematics, 313 (20): 2061–2064, doi:10.1016/j.disc.2013.06.018, MR 3084247.
  • Solymosi, Jozsef; de Zeeuw, Frank (2010), "On a question of Erdős and Ulam", Discrete and Computational Geometry, 43 (2): 393–401, arXiv:0806.3095, doi:10.1007/s00454-009-9179-x, MR 2579704, S2CID 15288690.

arxiv.org

books.google.com

  • Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN 9780486315522, MR 2047103. Reprint of 1994 Academic Press edition; the same name is given to the conjecture in the original 1990 edition.
  • Brass, Peter; Moser, William O. J.; Pach, János (2005), Research Problems in Discrete Geometry, Springer, p. 250, ISBN 9780387299297, MR 2163782.
  • Klee, Victor; Wagon, Stan (1991), "Problem 10: Does the plane contain a dense rational set?", Old and New Unsolved Problems in Plane Geometry and Number Theory, Dolciani mathematical expositions, vol. 11, Cambridge University Press, pp. 132–135, ISBN 978-0-88385-315-3, MR 1133201.

cccg.ca

doi.org

eudml.org

psu.edu

citeseerx.ist.psu.edu

semanticscholar.org

api.semanticscholar.org