Harmonic series (mathematics) (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Harmonic series (mathematics)" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
26th place
20th place
11th place
8th place
3rd place
3rd place
102nd place
76th place
69th place
59th place
18th place
17th place
low place
low place
low place
low place
low place
low place
9th place
13th place
2,948th place
1,879th place
1st place
1st place
3,600th place
2,528th place

ams.org

mathscinet.ams.org

arxiv.org

books.google.com

  • Mengoli, Pietro (1650). "Praefatio [Preface]". Novae quadraturae arithmeticae, seu De additione fractionum [New arithmetic quadrature (i.e., integration), or On the addition of fractions] (in Latin). Bologna: Giacomo Monti. Mengoli's proof is by contradiction: Let denote the sum of the series. Group the terms of the series in triplets: . Since for , , then , which is impossible for any finite . Therefore, the series diverges.
  • Bernoulli, Jacob (1713). Ars conjectandi, opus posthumum. Accedit Tractatus de seriebus infinitis [Theory of inference, posthumous work. With the Treatise on infinite series…]. Basel: Thurneysen. pp. 250–251.
    From p. 250, prop. 16:
    "XVI. Summa serei infinita harmonicè progressionalium, &c. est infinita. Id primus deprehendit Frater:…"
    [16. The sum of an infinite series of harmonic progression, , is infinite. My brother first discovered this…]
  • Bernoulli, Johann (1742). "Corollary III of De seriebus varia". Opera Omnia. Lausanne & Basel: Marc-Michel Bousquet & Co. vol. 4, p. 8. Johann Bernoulli's proof is also by contradiction. It uses a telescopic sum to represent each term as Changing the order of summation in the corresponding double series gives, in modern notation .
  • Bressoud, David M. (2007). A Radical Approach to Real Analysis. Classroom Resource Materials Series (2nd ed.). Washington, DC: Mathematical Association of America. pp. 137–138. ISBN 978-0-88385-747-2. MR 2284828.
  • Havil, Julian (2003). "Chapter 2: The harmonic series". Gamma: Exploring Euler's Constant. Princeton University Press. pp. 21–25. ISBN 978-0-691-14133-6.

doi.org

gla.ac.uk

eprints.gla.ac.uk

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

jstor.org

pacific.edu

scholarlycommons.pacific.edu

pme-math.org

semanticscholar.org

api.semanticscholar.org

stevekifowit.com

ualberta.ca

stat.ualberta.ca

web.archive.org

youtube.com