Analysis of information sources in references of the Wikipedia article "Heat death of the universe" in English language version.
Since we have assumed a maximum scale of gravitational binding—for instance, superclusters of galaxies—black hole formation eventually comes to an end in our model, with masses of up to 1014M☉ ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014M☉
Since we have assumed a maximum scale of gravitational binding—for instance, superclusters of galaxies—black hole formation eventually comes to an end in our model, with masses of up to 1014M☉ ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014M☉
Since we have assumed a maximum scale of gravitational binding—for instance, superclusters of galaxies—black hole formation eventually comes to an end in our model, with masses of up to 1014M☉ ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014M☉
Since we have assumed a maximum scale of gravitational binding—for instance, superclusters of galaxies—black hole formation eventually comes to an end in our model, with masses of up to 1014M☉ ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014M☉
Since we have assumed a maximum scale of gravitational binding—for instance, superclusters of galaxies—black hole formation eventually comes to an end in our model, with masses of up to 1014M☉ ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014M☉
Since we have assumed a maximum scale of gravitational binding—for instance, superclusters of galaxies—black hole formation eventually comes to an end in our model, with masses of up to 1014M☉ ... the timescale for black holes to radiate away all their energy ranges ... to 10106 years for black holes of up to 1014M☉