Hilbert space (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Hilbert space" in English language version.

refsWebsite
Global rank English rank
451st place
277th place
2nd place
2nd place
5th place
5th place
6th place
6th place
3rd place
3rd place
low place
low place
11th place
8th place
1,923rd place
1,068th place
3,863rd place
2,637th place
26th place
20th place
18th place
17th place
70th place
63rd place
4th place
4th place
1,547th place
1,410th place
1,997th place
1,295th place
3,707th place
2,409th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

archive.org (Global: 6th place; English: 6th place)

axler.net (Global: low place; English: low place)

linear.axler.net

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

  • Olver, Peter J.; Shakiban, Chehrzad (2018), Applied Linear Algebra, Undergraduate Texts in Mathematics, Springer International Publishing, p. 137, doi:10.1007/978-3-319-91041-3, ISBN 9783319910413
  • Kainth (2023). For the completeness of Euclidean space, see Definition 4.37 and Example 4.38, p. 108; for the equivalence of completeness with the property that absolutely convergent series converge, see Theorem 4.44, p. 110. Kainth, Surinder Pal Singh (2023), A Comprehensive Textbook on Metric Spaces, Springer Nature Singapore, doi:10.1007/978-981-99-2738-8, ISBN 9789819927388
  • Vince, John (2018), Imaginary Mathematics for Computer Science, Springer International Publishing, doi:10.1007/978-3-319-94637-5, ISBN 9783319946375
  • Kainth (2023), p. 108, Definition 4.37. Kainth, Surinder Pal Singh (2023), A Comprehensive Textbook on Metric Spaces, Springer Nature Singapore, doi:10.1007/978-981-99-2738-8, ISBN 9789819927388
  • Schmidt 1908 Schmidt, Erhard (1908), "Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten", Rend. Circ. Mat. Palermo, 25: 63–77, doi:10.1007/BF03029116, S2CID 120666844.
  • Kac 1966 Kac, Mark (1966), "Can one hear the shape of a drum?", American Mathematical Monthly, 73 (4, part 2): 1–23, doi:10.2307/2313748, JSTOR 2313748.
  • Berthier, M. (2020), "Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit", The Journal of Mathematical Neuroscience, 10 (1) 14, doi:10.1186/s13408-020-00092-x, PMC 7481323, PMID 32902776
  • Clarkson 1936 Clarkson, J. A. (1936), "Uniformly convex spaces", Trans. Amer. Math. Soc., 40 (3): 396–414, doi:10.2307/1989630, JSTOR 1989630.
  • von Neumann (1955) defines a Hilbert space via a countable Hilbert basis, which amounts to an isometric isomorphism with l2. The convention still persists in most rigorous treatments of quantum mechanics; see for instance Sobrino 1996, Appendix B. Sobrino, Luis (1996), Elements of non-relativistic quantum mechanics, River Edge, New Jersey: World Scientific Publishing Co. Inc., Bibcode:1996lnrq.book.....S, doi:10.1142/2865, ISBN 978-981-02-2386-1, MR 1626401.
  • Kakutani 1939. Kakutani, Shizuo (1939), "Some characterizations of Euclidean space", Japanese Journal of Mathematics, 16: 93–97, doi:10.4099/jjm1924.16.0_93, MR 0000895.
  • Lindenstrauss & Tzafriri 1971. Lindenstrauss, J.; Tzafriri, L. (1971), "On the complemented subspaces problem", Israel Journal of Mathematics, 9 (2): 263–269, doi:10.1007/BF02771592, ISSN 0021-2172, MR 0276734, S2CID 119575718.
  • See, for instance, Riesz & Sz.-Nagy (1990, Chapter VI) or Weidmann 1980, Chapter 7. This result was already known to Schmidt (1908) in the case of operators arising from integral kernels. Riesz, Frigyes; Sz.-Nagy, Béla (1990), Functional analysis, Dover, ISBN 978-0-486-66289-3. Weidmann, Joachim (1980), Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90427-6, MR 0566954. Schmidt, Erhard (1908), "Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten", Rend. Circ. Mat. Palermo, 25: 63–77, doi:10.1007/BF03029116, S2CID 120666844.

encyclopediaofmath.org (Global: 3,863rd place; English: 2,637th place)

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

jstor.org (Global: 26th place; English: 20th place)

loc.gov (Global: 70th place; English: 63rd place)

lccn.loc.gov

loc.gov

nih.gov (Global: 4th place; English: 4th place)

ncbi.nlm.nih.gov

pubmed.ncbi.nlm.nih.gov

projecteuclid.org (Global: 3,707th place; English: 2,409th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

st-andrews.ac.uk (Global: 1,547th place; English: 1,410th place)

mathshistory.st-andrews.ac.uk

ubc.ca (Global: 1,997th place; English: 1,295th place)

math.ubc.ca

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

zbmath.org (Global: 1,923rd place; English: 1,068th place)