Analysis of information sources in references of the Wikipedia article "History of calculus" in English language version.
Greek mathematics sometimes has been described as essentially static, with little regard for the notion of variability; but Archimedes, in his study of the spiral, seems to have found the tangent to a curve through kinematic considerations akin to differential calculus. Thinking of a point on the spiral 1=r = aθ as subjected to a double motion — a uniform radial motion away from the origin of coordinates and a circular motion about the origin — he seems to have found (through the parallelogram of velocities) the direction of motion (hence of the tangent to the curve) by noting the resultant of the two component motions. This appears to be the first instance in which a tangent was found to a curve other than a circle.
Archimedes' study of the spiral, a curve that he ascribed to his friend Conon of Alexandria, was part of the Greek search for the solution of the three famous problems.
The most interesting to us are Lectures X-XII, in which Barrow comes close to providing a geometrical demonstration of the fundamental theorem of the calculus... He did not realize, however, the full significance of his results, and his rejection of algebra means that his work must remain a piece of mid-17th century geometrical analysis of mainly historic interest.
The most interesting to us are Lectures X-XII, in which Barrow comes close to providing a geometrical demonstration of the fundamental theorem of the calculus... He did not realize, however, the full significance of his results, and his rejection of algebra means that his work must remain a piece of mid-17th century geometrical analysis of mainly historic interest.
The most interesting to us are Lectures X-XII, in which Barrow comes close to providing a geometrical demonstration of the fundamental theorem of the calculus... He did not realize, however, the full significance of his results, and his rejection of algebra means that his work must remain a piece of mid-17th century geometrical analysis of mainly historic interest.
The most interesting to us are Lectures X-XII, in which Barrow comes close to providing a geometrical demonstration of the fundamental theorem of the calculus... He did not realize, however, the full significance of his results, and his rejection of algebra means that his work must remain a piece of mid-17th century geometrical analysis of mainly historic interest.