Holomorphic function (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Holomorphic function" in English language version.

refsWebsite
Global rank English rank
3rd place
3rd place
451st place
277th place
3,863rd place
2,637th place
1,923rd place
1,068th place
6th place
6th place
2nd place
2nd place
26th place
20th place
3,627th place
2,467th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

archive.org (Global: 6th place; English: 6th place)

  • The original French terms were holomorphe and méromorphe.
    Briot, Charles Auguste; Bouquet, Jean-Claude (1875). "§15 fonctions holomorphes". Théorie des fonctions elliptiques (2nd ed.). Gauthier-Villars. pp. 14–15. Lorsqu'une fonction est continue, monotrope, et a une dérivée, quand la variable se meut dans une certaine partie du plan, nous dirons qu'elle est holomorphe dans cette partie du plan. Nous indiquons par cette dénomination qu'elle est semblable aux fonctions entières qui jouissent de ces propriétés dans toute l'étendue du plan. [...] ¶ Une fraction rationnelle admet comme pôles les racines du dénominateur; c'est une fonction holomorphe dans toute partie du plan qui ne contient aucun de ses pôles. ¶ Lorsqu'une fonction est holomorphe dans une partie du plan, excepté en certains pôles, nous dirons qu'elle est méromorphe dans cette partie du plan, c'est-à-dire semblable aux fractions rationnelles. [When a function is continuous, monotropic, and has a derivative, when the variable moves in a certain part of the [complex] plane, we say that it is holomorphic in that part of the plane. We mean by this name that it resembles entire functions which enjoy these properties in the full extent of the plane. [...] ¶ A rational fraction admits as poles the roots of the denominator; it is a holomorphic function in all that part of the plane which does not contain any poles. ¶ When a function is holomorphic in part of the plane, except at certain poles, we say that it is meromorphic in that part of the plane, that is to say it resembles rational fractions.]
    Harkness, James; Morley, Frank (1893). "5. Integration". A Treatise on the Theory of Functions. Macmillan. p. 161.
  • Briot & Bouquet had previously also adopted Cauchy’s term synectic (synectique in French), in the 1859 first edition of their book.
    Briot, Charles Auguste; Bouquet, Jean-Claude (1859). "§10". Théorie des fonctions doublement périodiques. Mallet-Bachelier. p. 11.

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

encyclopediaofmath.org (Global: 3,863rd place; English: 2,637th place)

  • "Analytic functions of one complex variable". Encyclopedia of Mathematics. European Mathematical Society / Springer. 2015 – via encyclopediaofmath.org.
  • "Analytic function", Encyclopedia of Mathematics, EMS Press, 2001 [1994], retrieved February 26, 2021

jstor.org (Global: 26th place; English: 20th place)

libretexts.org (Global: 3,627th place; English: 2,467th place)

math.libretexts.org

  • Ponce Campuzano, Juan Carlos (14 August 2021). "2.3: Complex Differentiation". Complex Analysis – A Visual and Interactive Introduction. LibreTexts. Retrieved 15 June 2025.

zbmath.org (Global: 1,923rd place; English: 1,068th place)