Homotopy type theory (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Homotopy type theory" in English language version.

refsWebsite
Global rank English rank
69th place
59th place
2nd place
2nd place
11th place
8th place
383rd place
320th place
low place
low place
1,564th place
1,028th place
451st place
277th place
low place
low place
1,185th place
840th place
652nd place
515th place
3rd place
3rd place
3,395th place
2,576th place
low place
low place
3,805th place
3,371st place
low place
7,448th place
14th place
14th place
18th place
17th place
1,553rd place
1,008th place
1st place
1st place
low place
low place
869th place
864th place
low place
8,775th place
7,948th place
5,350th place
916th place
706th place
low place
low place
low place
low place
low place
low place
1,031st place
879th place

acm.org

cacm.acm.org

dl.acm.org

ams.org

mathscinet.ams.org

andrej.com

math.andrej.com

  • Bauer, Andrej (20 June 2013). "The HoTT Book". Mathematics and Computation. Retrieved 6 June 2021.

archive.today

archives-ouvertes.fr

hal-iogs.archives-ouvertes.fr

arxiv.org

  • Shulman, Michael (27 January 2016). "Homotopy Type Theory: A synthetic approach to higher equalities". arXiv:1601.05035v3 [math.LO]., footnote 1
  • Ahrens, Benedikt; Kapulkin, Krzysztof; Shulman, Michael (2015). "Univalent categories and the Rezk completion". Mathematical Structures in Computer Science. 25 (5): 1010–1039. arXiv:1303.0584. doi:10.1017/S0960129514000486. MR 3340533. S2CID 1135785.
  • Berg, Benno van den; Garner, Richard (27 July 2010). "Topological and simplicial models of identity types". arXiv:1007.4638 [math.LO].
  • Lumsdaine, Peter LeFanu; Warren, Michael A. (6 November 2014). "The local universes model: an overlooked coherence construction for dependent type theories". ACM Transactions on Computational Logic. 16 (3): 1–31. arXiv:1411.1736. doi:10.1145/2754931. S2CID 14068103.
  • Awodey, Steve; Warren, Michael A. (3 September 2007). "Homotopy theoretic models of identity types". Mathematical Proceedings of the Cambridge Philosophical Society. 146 (1): 45. arXiv:0709.0248. Bibcode:2008MPCPS.146...45A. doi:10.1017/S0305004108001783. S2CID 7915709.
  • van den Berg, Benno; Garner, Richard (1 December 2007). "Types are weak omega-groupoids". Proceedings of the London Mathematical Society. 102 (2): 370–394. arXiv:0812.0298. doi:10.1112/plms/pdq026. S2CID 5575780.
  • Martín Hötzel Escardó (October 18, 2018) A self-contained, brief and complete formulation of Voevodsky’s Univalence Axiom
  • Shulman, Michael (2015). "Univalence for inverse diagrams and homotopy canonicity". Mathematical Structures in Computer Science. 25 (5): 1203–1277. arXiv:1203.3253. doi:10.1017/S0960129514000565. S2CID 13595170.
  • Sojakova, Kristina (2015). Higher Inductive Types as Homotopy-Initial Algebras. POPL 2015. arXiv:1402.0761. doi:10.1145/2676726.2676983.

books.google.com

cmu.edu

cs.cmu.edu

andrew.cmu.edu

  • [1] Steve Awodey. Univalence as a principle of logic. Indagationes Mathematicae: Special Issue L.E.J. Brouwer, 50 years later, D. van Dalen, et al. (ed.s), 2018. Preprint.

computingreviews.com

doi.org

files.wordpress.com

hottheory.files.wordpress.com

github.com

harvard.edu

ui.adsabs.harvard.edu

homotopytypetheory.org

ias.edu

math.ias.edu

ieee.org

ieeexplore.ieee.org

loria.fr

mawarren.net

mq.edu.au

comp.mq.edu.au

ncatlab.org

rdworldonline.com

rett.org.uk

lib.rett.org.uk

semanticscholar.org

api.semanticscholar.org

ucalgary.ca

pages.cpsc.ucalgary.ca

ucr.edu

math.ucr.edu

utexas.edu

golem.ph.utexas.edu

  • Shulman, Mike (20 June 2013). "The HoTT Book". The n-Category Café. Retrieved 6 June 2021 – via University of Texas.

uu.se

www2.math.uu.se

web.archive.org