Hopf conjecture (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Hopf conjecture" in English language version.

refsWebsite
Global rank English rank
451st place
277th place
2nd place
2nd place

ams.org

mathscinet.ams.org

  • Chern, Shiing-Shen (1966). "On curvature and characteristic classes of a Riemann manifold". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 20 (1–2): 117–126. doi:10.1007/BF02960745. MR 0075647.
  • Weinstein, Alan (1970). "Positively curved n-manifolds in ". Journal of Differential Geometry. 14 (1): 1–4. doi:10.4310/jdg/1214429270. MR 0264562.
  • Yau, Shing-Tung (1982), "Problem section", Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102, Princeton, N.J.: Princeton University Press, pp. 669–706, ISBN 0-691-08268-5, MR 0645728
  • Gromoll, Detlef; Klingenberg, Wilhelm; Meyer, Wolfgang (1968). Riemannsche Geometrie im Grossen. Lecture Notes in Mathematics. Vol. 55. Berlin-New York: Springer Verlag. MR 0229177.
  • Bourguignon, Jean-Pierre (1975), "Some constructions related to H. Hopf's conjecture on product manifolds", Differential Geometry, Proceedings of Symposia in Pure Mathematics, vol. 27, Providence, R.I.: American Mathematical Society, pp. 33–37, MR 0380906
  • Weinstein, Alan (1970). "Positively curved n-manifolds in ". Journal of Differential Geometry. 4 (1): 1–4. doi:10.4310/jdg/1214429270. MR 0264562.
  • Dmitri Burago and Sergei Ivanov, Riemannian tori without conjugate points are flat, Geometric and Functional Analysis 4 (1994), no. 3, 259-269, doi:10.1007/BF01896241, MR1274115.

ams.org

doi.org

  • Chern, Shiing-Shen (1966). "On curvature and characteristic classes of a Riemann manifold". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 20 (1–2): 117–126. doi:10.1007/BF02960745. MR 0075647.
  • Weinstein, Alan (1970). "Positively curved n-manifolds in ". Journal of Differential Geometry. 14 (1): 1–4. doi:10.4310/jdg/1214429270. MR 0264562.
  • Weinstein, Alan (1970). "Positively curved n-manifolds in ". Journal of Differential Geometry. 4 (1): 1–4. doi:10.4310/jdg/1214429270. MR 0264562.
  • Dmitri Burago and Sergei Ivanov, Riemannian tori without conjugate points are flat, Geometric and Functional Analysis 4 (1994), no. 3, 259-269, doi:10.1007/BF01896241, MR1274115.