Thomassen (1978). Thomassen, Carsten (1978), "Hypohamiltonian graphs and digraphs", Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), Lecture Notes in Mathematics, vol. 642, Berlin: Springer-Verlag, pp. 557–571, MR0499523.
Robertson (1969) proved that these graphs are non-Hamiltonian, while it is straightforward to verify that their one-vertex deletions are Hamiltonian. See Alspach (1983) for a classification of non-Hamiltonian generalized Petersen graphs. Robertson, G. N. (1969), Graphs minimal under girth, valency and connectivity constraints, Ph. D. thesis, Waterloo, Ontario: University of Waterloo. Alspach, B. R. (1983), "The classification of Hamiltonian generalized Petersen graphs", Journal of Combinatorial Theory, Series B, 34 (3): 293–312, doi:10.1016/0095-8956(83)90042-4, MR0714452.
Fouquet & Jolivet (1978); Grötschel & Wakabayashi (1980); Grötschel & Wakabayashi (1984); Thomassen (1978). Fouquet, J.-L.; Jolivet, J. L. (1978), "Hypohamiltonian oriented graphs", Cahiers Centre Études Rech. Opér., 20 (2): 171–181, MR0498218. Grötschel, M.; Wakabayashi, Y. (1980), "Hypohamiltonian digraphs", Methods of Operations Research, 36: 99–119, Zbl0436.05038. Grötschel, M.; Wakabayashi, Y. (1984), "Constructions of hypotraceable digraphs", in Cottle, R. W.; Kelmanson, M. L.; Korte, B. (eds.), Mathematical Programming (Proc. International Congress, Rio de Janeiro, 1981), North-Holland. Thomassen, Carsten (1978), "Hypohamiltonian graphs and digraphs", Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), Lecture Notes in Mathematics, vol. 642, Berlin: Springer-Verlag, pp. 557–571, MR0499523.
Robertson (1969) proved that these graphs are non-Hamiltonian, while it is straightforward to verify that their one-vertex deletions are Hamiltonian. See Alspach (1983) for a classification of non-Hamiltonian generalized Petersen graphs. Robertson, G. N. (1969), Graphs minimal under girth, valency and connectivity constraints, Ph. D. thesis, Waterloo, Ontario: University of Waterloo. Alspach, B. R. (1983), "The classification of Hamiltonian generalized Petersen graphs", Journal of Combinatorial Theory, Series B, 34 (3): 293–312, doi:10.1016/0095-8956(83)90042-4, MR0714452.
Skupień (1989); Skupień (2007). Skupień, Z. (1989), "Exponentially many hypohamiltonian graphs", Graphs, Hypergraphs and Matroids III (Proc. Conf. Kalsk 1988), Zielona Góra: Higher College of Engineering, pp. 123–132. As cited by Skupień (2007). Skupień, Z. (2007), "Exponentially many hypohamiltonian snarks", 6th Czech-Slovak International Symposium on Combinatorics, Graph Theory, Algorithms and Applications, Electronic Notes in Discrete Mathematics, vol. 28, pp. 417–424, doi:10.1016/j.endm.2007.01.059.
Fouquet & Jolivet (1978); Grötschel & Wakabayashi (1980); Grötschel & Wakabayashi (1984); Thomassen (1978). Fouquet, J.-L.; Jolivet, J. L. (1978), "Hypohamiltonian oriented graphs", Cahiers Centre Études Rech. Opér., 20 (2): 171–181, MR0498218. Grötschel, M.; Wakabayashi, Y. (1980), "Hypohamiltonian digraphs", Methods of Operations Research, 36: 99–119, Zbl0436.05038. Grötschel, M.; Wakabayashi, Y. (1984), "Constructions of hypotraceable digraphs", in Cottle, R. W.; Kelmanson, M. L.; Korte, B. (eds.), Mathematical Programming (Proc. International Congress, Rio de Janeiro, 1981), North-Holland. Thomassen, Carsten (1978), "Hypohamiltonian graphs and digraphs", Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976), Lecture Notes in Mathematics, vol. 642, Berlin: Springer-Verlag, pp. 557–571, MR0499523.