The standard reference for padding in space complexity (which predates this theorem) is Savitch, Walter J. (1970), "Relationships between nondeterministic and deterministic tape complexities", Journal of Computer and System Sciences, 4 (2): 177–192, doi:10.1016/s0022-0000(70)80006-x, hdl:10338.dmlcz/120475, MR0266702. For a stronger padding argument that applies even to sublogarithmic space complexity classes, see Szepietowski, Andrzej (1994), Turing machines with sublogarithmic space, Lecture Notes in Computer Science, vol. 843, Springer-Verlag, Berlin, doi:10.1007/3-540-58355-6, ISBN3-540-58355-6, MR1314820, S2CID44312772.
The standard reference for padding in space complexity (which predates this theorem) is Savitch, Walter J. (1970), "Relationships between nondeterministic and deterministic tape complexities", Journal of Computer and System Sciences, 4 (2): 177–192, doi:10.1016/s0022-0000(70)80006-x, hdl:10338.dmlcz/120475, MR0266702. For a stronger padding argument that applies even to sublogarithmic space complexity classes, see Szepietowski, Andrzej (1994), Turing machines with sublogarithmic space, Lecture Notes in Computer Science, vol. 843, Springer-Verlag, Berlin, doi:10.1007/3-540-58355-6, ISBN3-540-58355-6, MR1314820, S2CID44312772.
The standard reference for padding in space complexity (which predates this theorem) is Savitch, Walter J. (1970), "Relationships between nondeterministic and deterministic tape complexities", Journal of Computer and System Sciences, 4 (2): 177–192, doi:10.1016/s0022-0000(70)80006-x, hdl:10338.dmlcz/120475, MR0266702. For a stronger padding argument that applies even to sublogarithmic space complexity classes, see Szepietowski, Andrzej (1994), Turing machines with sublogarithmic space, Lecture Notes in Computer Science, vol. 843, Springer-Verlag, Berlin, doi:10.1007/3-540-58355-6, ISBN3-540-58355-6, MR1314820, S2CID44312772.
The standard reference for padding in space complexity (which predates this theorem) is Savitch, Walter J. (1970), "Relationships between nondeterministic and deterministic tape complexities", Journal of Computer and System Sciences, 4 (2): 177–192, doi:10.1016/s0022-0000(70)80006-x, hdl:10338.dmlcz/120475, MR0266702. For a stronger padding argument that applies even to sublogarithmic space complexity classes, see Szepietowski, Andrzej (1994), Turing machines with sublogarithmic space, Lecture Notes in Computer Science, vol. 843, Springer-Verlag, Berlin, doi:10.1007/3-540-58355-6, ISBN3-540-58355-6, MR1314820, S2CID44312772.