Integer (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Integer" in English language version.

refsWebsite
Global rank English rank
3rd place
3rd place
6th place
6th place
1st place
1st place
2nd place
2nd place
549th place
491st place
low place
low place
2,548th place
1,587th place
2,334th place
1,403rd place
40th place
58th place
4,903rd place
3,679th place

ahdictionary.com (Global: 2,334th place; English: 1,403rd place)

archive.org (Global: 6th place; English: 6th place)

  • Hillman, Abraham P.; Alexanderson, Gerald L. (1963). Algebra and trigonometry;. Boston: Allyn and Bacon.
  • Euler, Leonhard (1771). Vollstandige Anleitung Zur Algebra [Complete Introduction to Algebra] (in German). Vol. 1. p. 10. Alle diese Zahlen, so wohl positive als negative, führen den bekannten Nahmen der gantzen Zahlen, welche also entweder größer oder kleiner sind als nichts. Man nennt dieselbe gantze Zahlen, um sie von den gebrochenen, und noch vielerley andern Zahlen, wovon unten gehandelt werden wird, zu unterscheiden. [All these numbers, both positive and negative, are called whole numbers, which are either greater or lesser than nothing. We call them whole numbers, to distinguish them from fractions, and from several other kinds of numbers of which we shall hereafter speak.]
  • Bourbaki, Nicolas (1951). Algèbre, Chapter 1 (in French) (2nd ed.). Paris: Hermann. p. 27. Le symétrisé de N se note Z; ses éléments sont appelés entiers rationnels. [The group of differences of N is denoted by Z; its elements are called the rational integers.]
  • Birkhoff, Garrett (1948). Lattice Theory (Revised ed.). American Mathematical Society. p. 63. the set J of all integers
  • Mendelson, Elliott (1985). Number systems and the foundations of analysis. Malabar, Fla. : R.E. Krieger Pub. Co. p. 153. ISBN 978-0-89874-818-5.
  • Campbell, Howard E. (1970). The structure of arithmetic. Appleton-Century-Crofts. p. 83. ISBN 978-0-390-16895-5.

books.google.com (Global: 3rd place; English: 3rd place)

  • Science and Technology Encyclopedia. University of Chicago Press. September 2000. p. 280. ISBN 978-0-226-74267-0.
  • Peter Jephson Cameron (1998). Introduction to Algebra. Oxford University Press. p. 4. ISBN 978-0-19-850195-4. Archived from the original on 8 December 2016. Retrieved 15 February 2016.
  • Partee, Barbara H.; Meulen, Alice ter; Wall, Robert E. (30 April 1990). Mathematical Methods in Linguistics. Springer Science & Business Media. pp. 78–82. ISBN 978-90-277-2245-4. The natural numbers are not themselves a subset of this set-theoretic representation of the integers. Rather, the set of all integers contains a subset consisting of the positive integers and zero which is isomorphic to the set of natural numbers.
  • Wohlgemuth, Andrew (10 June 2014). Introduction to Proof in Abstract Mathematics. Courier Corporation. p. 237. ISBN 978-0-486-14168-8.
  • Prep, Kaplan Test (4 June 2019). GMAT Complete 2020: The Ultimate in Comprehensive Self-Study for GMAT. Simon and Schuster. ISBN 978-1-5062-4844-8.
  • Evans, Nick (1995). "A-Quantifiers and Scope". In Bach, Emmon W. (ed.). Quantification in Natural Languages. Dordrecht, The Netherlands; Boston, MA: Kluwer Academic Publishers. p. 262. ISBN 978-0-7923-3352-4.
  • Smedley, Edward; Rose, Hugh James; Rose, Henry John (1845). Encyclopædia Metropolitana. B. Fellowes. p. 537. An integer is a multiple of unity
  • Encyclopaedia Britannica 1771, p. 367
  • Encyclopaedia Britannica 1771, p. 83
  • The University of Leeds Review. Vol. 31–32. University of Leeds. 1989. p. 46. Incidentally, Z comes from "Zahl": the notation was created by Hilbert.
  • Society, Canadian Mathematical (1960). Canadian Journal of Mathematics. Canadian Mathematical Society. p. 374. Consider the set Z of non-negative integers
  • Bezuszka, Stanley (1961). Contemporary Progress in Mathematics: Teacher Supplement [to] Part 1 and Part 2. Boston College. p. 69. Modern Algebra texts generally designate the set of integers by the capital letter Z.
  • Mathews, George Ballard (1892). Theory of Numbers. Deighton, Bell and Company. p. 2.
  • Betz, William (1934). Junior Mathematics for Today. Ginn. The whole numbers, or integers, when arranged in their natural order, such as 1, 2, 3, are called consecutive integers.
  • Peck, Lyman C. (1950). Elements of Algebra. McGraw-Hill. p. 3. The numbers which so arise are called positive whole numbers, or positive integers.
  • The Growth of Mathematical Ideas, Grades K-12: 24th Yearbook. National Council of Teachers of Mathematics. 1959. p. 14. ISBN 9780608166186. {{cite book}}: ISBN / Date incompatibility (help)
  • Deans, Edwina (1963). Elementary School Mathematics: New Directions. U.S. Department of Health, Education, and Welfare, Office of Education. p. 42.
  • Warner, Seth (2012). Modern Algebra. Dover Books on Mathematics. Courier Corporation. Theorem 20.14, p. 185. ISBN 978-0-486-13709-4. Archived from the original on 6 September 2015. Retrieved 29 April 2015..
  • Mendelson, Elliott (2008). Number Systems and the Foundations of Analysis. Dover Books on Mathematics. Courier Dover Publications. p. 86. ISBN 978-0-486-45792-5. Archived from the original on 8 December 2016. Retrieved 15 February 2016..
  • Frobisher, Len (1999). Learning to Teach Number: A Handbook for Students and Teachers in the Primary School. The Stanley Thornes Teaching Primary Maths Series. Nelson Thornes. p. 126. ISBN 978-0-7487-3515-0. Archived from the original on 8 December 2016. Retrieved 15 February 2016..

britannica.com (Global: 40th place; English: 58th place)

doi.org (Global: 2nd place; English: 2nd place)

iastate.edu (Global: 2,548th place; English: 1,587th place)

dr.lib.iastate.edu

inria.fr (Global: 4,903rd place; English: 3,679th place)

hal.inria.fr

museogalileo.it (Global: low place; English: low place)

bibdig.museogalileo.it

tripod.com (Global: 549th place; English: 491st place)

jeff560.tripod.com

web.archive.org (Global: 1st place; English: 1st place)