Integrated modular avionics (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Integrated modular avionics" in English language version.

refsWebsite
Global rank English rank
1st place
1st place
low place
low place
low place
low place
9,924th place
6,010th place
940th place
907th place
652nd place
515th place
2nd place
2nd place
11th place
8th place
low place
low place
low place
9,745th place
low place
low place
low place
low place

assconline.co.uk

  • "ASSC - Evaluation of RTOS Systems" (PDF). assconline.co.uk. March 1997. Archived from the original (PDF) on 2011-09-04. Retrieved 2008-07-27.

aviationtoday.com

  • "Integrated Modular Avionics: Less is More". Aviation Today. 2007-02-01. Archived from the original on 2012-12-23. Retrieved 2013-03-07. Some believe the IMA concept originated in the United States with the new F-22 and F-35 fighters and then migrated to the commercial jetliner arena. Others say the modular avionics concept, with less integration, has been used in business jets and regional airliners since the late 1980s or early 90s

dassault-aviation.com

  • "RAFALE". Dassault Aviation. 2005-06-12. Archived from the original on 2007-12-04. Retrieved 2008-02-09. The core of the enhanced capabilities of the RAFALE lies in a new Modular Data Processing Unit (MDPU). It is composed of up to 18 flight line-replaceable modules, each with a processing power 50 times higher than that of the 2084 XRI type computer fitted on the early versions of Mirage 2000-5.

doi.org

geaviation.com

geaviationsystems.com

  • "Common Core System (CCS)". GE Aviation Systems. Archived from the original on 2008-12-01. Retrieved 2008-02-09. GE has developed a compute platform running an ARINC 653 partitioned operating environment with an Avionics Full Duplex Switched Ethernet (AFDX) network backbone. The CCS provides shared system platform resources to host airplane functional systems such as Avionics, Environmental Control, Electrical, Mechanical, Hydraulic, Auxiliary Power Unit, Cabin Services, Flight Controls, Health Management, Fuel, Payloads, and Propulsion.

honeywell.com

  • "Dassault Falcon EASY Flight Deck". Honeywell. July 2005. Retrieved 2008-02-09. The heart of the EASy platform is two, dual-channel, cabinet-based modular avionics units (MAUs). Highly rationalized, the MAU integrates functional cards for several applications into a single module. Each functional card performs multiple tasks previously requiring dedicated computer processors.

ieee.org

ieeexplore.ieee.org

nato.int

ftp.rta.nato.int

semanticscholar.org

api.semanticscholar.org

thalesonline.com

web.archive.org

  • "ASSC - Evaluation of RTOS Systems" (PDF). assconline.co.uk. March 1997. Archived from the original (PDF) on 2011-09-04. Retrieved 2008-07-27.
  • "Integrated Modular Avionics: Less is More". Aviation Today. 2007-02-01. Archived from the original on 2012-12-23. Retrieved 2013-03-07. Some believe the IMA concept originated in the United States with the new F-22 and F-35 fighters and then migrated to the commercial jetliner arena. Others say the modular avionics concept, with less integration, has been used in business jets and regional airliners since the late 1980s or early 90s
  • René L. C. Eveleens (2 November 2006). "Integrated Modular Avionics - Development Guidance and Certification Considerations" (PDF). National Aerospace Laboratory. Archived from the original (PDF) on 2012-06-03. Retrieved 2011-06-25. Biggest challenge within this area is that modular avionics is a composition of building blocks, preferably supplied by different companies in the supply chain. Each supplier is supposed to bring its part to a certain level of qualification, and after this a system integrator can use these "pre-qualified" part in the overall certification process.
  • "Avionics for the A380: new and highly functional ! Dynamic flightdeck presentation at Paris Air Show". Thales Group. 2003-06-17. Archived from the original on 2008-05-03. Retrieved 2008-02-09. Integrated Modular Avionics (IMA), based on standardised modules that can be shared by several functions. The IMA concept is very scalable, and delivers significant improvements in reliability, maintainability, size and weight.
  • "Common Core System (CCS)". GE Aviation Systems. Archived from the original on 2008-12-01. Retrieved 2008-02-09. GE has developed a compute platform running an ARINC 653 partitioned operating environment with an Avionics Full Duplex Switched Ethernet (AFDX) network backbone. The CCS provides shared system platform resources to host airplane functional systems such as Avionics, Environmental Control, Electrical, Mechanical, Hydraulic, Auxiliary Power Unit, Cabin Services, Flight Controls, Health Management, Fuel, Payloads, and Propulsion.
  • "Thales wins major Rafale through-life support contract from SIMMAD". Thales Group. Archived from the original on 2008-05-03. Retrieved 2008-02-09.
  • "RAFALE". Dassault Aviation. 2005-06-12. Archived from the original on 2007-12-04. Retrieved 2008-02-09. The core of the enhanced capabilities of the RAFALE lies in a new Modular Data Processing Unit (MDPU). It is composed of up to 18 flight line-replaceable modules, each with a processing power 50 times higher than that of the 2084 XRI type computer fitted on the early versions of Mirage 2000-5.