Intrinsic dimension (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Intrinsic dimension" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
4th place
4th place
69th place
59th place
5th place
5th place
18th place
17th place
274th place
309th place
833rd place
567th place
652nd place
515th place
149th place
178th place
1st place
1st place
3rd place
3rd place
102nd place
76th place
3,588th place
3,072nd place
low place
low place

arxiv.org

books.google.com

diva-portal.org

liu.diva-portal.org

doi.org

  • Amsaleg, Laurent; Chelly, Oussama; Furon, Teddy; Girard, Stéphane; Houle, Michael E.; Kawarabayashi, Ken-ichi; Nett, Michael (2015-08-10). "Estimating Local Intrinsic Dimensionality". Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '15. Sydney, NSW, Australia: Association for Computing Machinery. pp. 29–38. doi:10.1145/2783258.2783405. ISBN 978-1-4503-3664-2. S2CID 16058196.
  • Houle, M. E.; Kashima, H.; Nett, M. (2012). "Generalized Expansion Dimension". 2012 IEEE 12th International Conference on Data Mining Workshops. pp. 587–594. doi:10.1109/ICDMW.2012.94. ISBN 978-1-4673-5164-5. S2CID 8336466.
  • Thordsen, Erik; Schubert, Erich (2020). "ABID: Angle Based Intrinsic Dimensionality". In Satoh, Shin'ichi; Vadicamo, Lucia; Zimek, Arthur; Carrara, Fabio; Bartolini, Ilaria; Aumüller, Martin; Jónsson, Björn Þór; Pagh, Rasmus (eds.). Similarity Search and Applications. Lecture Notes in Computer Science. Vol. 12440. Cham: Springer International Publishing. pp. 218–232. arXiv:2006.12880. doi:10.1007/978-3-030-60936-8_17. ISBN 978-3-030-60936-8. S2CID 219980390.
  • Camastra, Francesco; Staiano, Antonino (2016-01-20). "Intrinsic dimension estimation: Advances and open problems". Information Sciences. 328: 26–41. doi:10.1016/j.ins.2015.08.029. ISSN 0020-0255.
  • Facco, Elena; d’Errico, Maria; Rodriguez, Alex; Laio, Alessandro (2017-09-22). "Estimating the intrinsic dimension of datasets by a minimal neighborhood information". Scientific Reports. 7 (1): 12140. arXiv:1803.06992. Bibcode:2017NatSR...712140F. doi:10.1038/s41598-017-11873-y. ISSN 2045-2322. PMC 5610237. PMID 28939866.
  • Shepard, Roger N. (1962). "The analysis of proximities: Multidimensional scaling with an unknown distance function. I.". Psychometrika. 27 (2): 125–140. doi:10.1007/BF02289630. S2CID 186222646.
  • Shepard, Roger N. (1974). "Representation of structure in similarity data: Problems and prospects". Psychometrika. 39 (4): 373–421. doi:10.1007/BF02291665. S2CID 121704645.
  • Bennett, Robert S. (September 1969). "The intrinsic dimensionality of signal collections". IEEE Transactions on Information Theory. 15 (5): 517–525. doi:10.1109/TIT.1969.1054365.
  • Fukunaga, K.; Olsen, D. R. (1971). "An algorithm for finding intrinsic dimensionality of data". IEEE Transactions on Computers. 20 (2): 176–183. doi:10.1109/T-C.1971.223208. S2CID 30206700.
  • Pettis, K. W.; Bailey, Thomas A.; Jain, Anil K.; Dubes, Richard C. (1979). "An intrinsic dimensionality estimator from near-neighbor information". IEEE Transactions on Pattern Analysis and Machine Intelligence. 1 (1): 25–37. doi:10.1109/TPAMI.1979.4766873. PMID 21868828. S2CID 2196461.
  • Trunk, G. V. (1976). "Statistical estimation of the intrinsic dimensionality of a noisy signal collection". IEEE Transactions on Computers. 100 (2): 165–171. doi:10.1109/TC.1976.5009231. S2CID 1181023.
  • Grassberger, P.; Procaccia, I. (1983). "Measuring the strangeness of strange attractors". Physica D: Nonlinear Phenomena. 9 (1–2): 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1.
  • Takens, F. (1984). "On the numerical determination of the dimension of an attractor". In Tong, Howell (ed.). Dynamical Systems and Bifurcations, Proceedings of a Workshop Held in Groningen, The Netherlands, April 16-20, 1984. Lecture Notes in Mathematics. Vol. 1125. Springer-Verlag. pp. 99–106. doi:10.1007/BFb0075637. ISBN 3540394117.
  • Chavez, E. (2001). "Searching in metric spaces". ACM Computing Surveys. 33 (3): 273–321. doi:10.1145/502807.502808. hdl:10533/172863. S2CID 3201604.
  • Pestov, V. (2008). "An axiomatic approach to intrinsic dimension of a dataset". Neural Networks. 21 (2–3): 204–213. arXiv:0712.2063. doi:10.1016/j.neunet.2007.12.030. PMID 18234471. S2CID 2309396.

dtic.mil

dtic.mil

apps.dtic.mil

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

hh.se

www2.hh.se

ieee.org

ieeexplore.ieee.org

nih.gov

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

sciencedirect.com

semanticscholar.org

api.semanticscholar.org

  • Amsaleg, Laurent; Chelly, Oussama; Furon, Teddy; Girard, Stéphane; Houle, Michael E.; Kawarabayashi, Ken-ichi; Nett, Michael (2015-08-10). "Estimating Local Intrinsic Dimensionality". Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '15. Sydney, NSW, Australia: Association for Computing Machinery. pp. 29–38. doi:10.1145/2783258.2783405. ISBN 978-1-4503-3664-2. S2CID 16058196.
  • Houle, M. E.; Kashima, H.; Nett, M. (2012). "Generalized Expansion Dimension". 2012 IEEE 12th International Conference on Data Mining Workshops. pp. 587–594. doi:10.1109/ICDMW.2012.94. ISBN 978-1-4673-5164-5. S2CID 8336466.
  • Thordsen, Erik; Schubert, Erich (2020). "ABID: Angle Based Intrinsic Dimensionality". In Satoh, Shin'ichi; Vadicamo, Lucia; Zimek, Arthur; Carrara, Fabio; Bartolini, Ilaria; Aumüller, Martin; Jónsson, Björn Þór; Pagh, Rasmus (eds.). Similarity Search and Applications. Lecture Notes in Computer Science. Vol. 12440. Cham: Springer International Publishing. pp. 218–232. arXiv:2006.12880. doi:10.1007/978-3-030-60936-8_17. ISBN 978-3-030-60936-8. S2CID 219980390.
  • Shepard, Roger N. (1962). "The analysis of proximities: Multidimensional scaling with an unknown distance function. I.". Psychometrika. 27 (2): 125–140. doi:10.1007/BF02289630. S2CID 186222646.
  • Shepard, Roger N. (1974). "Representation of structure in similarity data: Problems and prospects". Psychometrika. 39 (4): 373–421. doi:10.1007/BF02291665. S2CID 121704645.
  • Fukunaga, K.; Olsen, D. R. (1971). "An algorithm for finding intrinsic dimensionality of data". IEEE Transactions on Computers. 20 (2): 176–183. doi:10.1109/T-C.1971.223208. S2CID 30206700.
  • Pettis, K. W.; Bailey, Thomas A.; Jain, Anil K.; Dubes, Richard C. (1979). "An intrinsic dimensionality estimator from near-neighbor information". IEEE Transactions on Pattern Analysis and Machine Intelligence. 1 (1): 25–37. doi:10.1109/TPAMI.1979.4766873. PMID 21868828. S2CID 2196461.
  • Trunk, G. V. (1976). "Statistical estimation of the intrinsic dimensionality of a noisy signal collection". IEEE Transactions on Computers. 100 (2): 165–171. doi:10.1109/TC.1976.5009231. S2CID 1181023.
  • Chavez, E. (2001). "Searching in metric spaces". ACM Computing Surveys. 33 (3): 273–321. doi:10.1145/502807.502808. hdl:10533/172863. S2CID 3201604.
  • Pestov, V. (2008). "An axiomatic approach to intrinsic dimension of a dataset". Neural Networks. 21 (2–3): 204–213. arXiv:0712.2063. doi:10.1016/j.neunet.2007.12.030. PMID 18234471. S2CID 2309396.

springer.com

link.springer.com

springer.com

web.archive.org

worldcat.org

search.worldcat.org