Analysis of information sources in references of the Wikipedia article "Ion channel" in English language version.
An expansive review of bioelectrical characteristics from 1987. ... the observation of an inductance (negative capacitance) by Cole and Baker (1941) during measurements of the AC electrical properties of squid axons led directly to the concept of voltage-gated membrane pores, as embodied in the celebrated Hodgkin-Huxley (1952) treatment (Cole 1972, Jack er a1 1975), as the crucial mechanism of neurotransmission.
Other than Ca2+ and Na+ channels that are formed by four intramolecular repeats, together forming the tetrameric channel's pore, the new channel had just two Shaker-like repeats, each of which was equipped with one pore domain. Because of this unusual topology, this channel, present in animals as well as plants, was named Two Pore Channel1 (TPC1).
The best candidate for a vacuolar Ca2+ release channel is TPC1, a homolog of a mammalian voltage-gated Ca2+ channel that possesses two pores and twelve membrane spans.
Organellar two-pore channels (TPCs) are an interesting type of channel that, as the name suggests, has two pores.
The Arabidopsis two‐pore channel (AtTPC1) has been predicted to have 12 transmembrane helices and two pores (red lines).
An expansive review of bioelectrical characteristics from 1987. ... the observation of an inductance (negative capacitance) by Cole and Baker (1941) during measurements of the AC electrical properties of squid axons led directly to the concept of voltage-gated membrane pores, as embodied in the celebrated Hodgkin-Huxley (1952) treatment (Cole 1972, Jack er a1 1975), as the crucial mechanism of neurotransmission.
Describes what happens when you stick a giant squid axon with electrodes and pass through an alternating current, and then notice that sometimes the voltage rises with time, and sometimes it decreases. The inductive reactance is a property of the axon and requires that it contain an inductive structure. The variation of the impedance with interpolar distance indicates that the inductance is in the membrane
Other than Ca2+ and Na+ channels that are formed by four intramolecular repeats, together forming the tetrameric channel's pore, the new channel had just two Shaker-like repeats, each of which was equipped with one pore domain. Because of this unusual topology, this channel, present in animals as well as plants, was named Two Pore Channel1 (TPC1).
An expansive review of bioelectrical characteristics from 1987. ... the observation of an inductance (negative capacitance) by Cole and Baker (1941) during measurements of the AC electrical properties of squid axons led directly to the concept of voltage-gated membrane pores, as embodied in the celebrated Hodgkin-Huxley (1952) treatment (Cole 1972, Jack er a1 1975), as the crucial mechanism of neurotransmission.
Other than Ca2+ and Na+ channels that are formed by four intramolecular repeats, together forming the tetrameric channel's pore, the new channel had just two Shaker-like repeats, each of which was equipped with one pore domain. Because of this unusual topology, this channel, present in animals as well as plants, was named Two Pore Channel1 (TPC1).
The best candidate for a vacuolar Ca2+ release channel is TPC1, a homolog of a mammalian voltage-gated Ca2+ channel that possesses two pores and twelve membrane spans.
Organellar two-pore channels (TPCs) are an interesting type of channel that, as the name suggests, has two pores.
The Arabidopsis two‐pore channel (AtTPC1) has been predicted to have 12 transmembrane helices and two pores (red lines).
An expansive review of bioelectrical characteristics from 1987. ... the observation of an inductance (negative capacitance) by Cole and Baker (1941) during measurements of the AC electrical properties of squid axons led directly to the concept of voltage-gated membrane pores, as embodied in the celebrated Hodgkin-Huxley (1952) treatment (Cole 1972, Jack er a1 1975), as the crucial mechanism of neurotransmission.
Describes what happens when you stick a giant squid axon with electrodes and pass through an alternating current, and then notice that sometimes the voltage rises with time, and sometimes it decreases. The inductive reactance is a property of the axon and requires that it contain an inductive structure. The variation of the impedance with interpolar distance indicates that the inductance is in the membrane
Other than Ca2+ and Na+ channels that are formed by four intramolecular repeats, together forming the tetrameric channel's pore, the new channel had just two Shaker-like repeats, each of which was equipped with one pore domain. Because of this unusual topology, this channel, present in animals as well as plants, was named Two Pore Channel1 (TPC1).
The best candidate for a vacuolar Ca2+ release channel is TPC1, a homolog of a mammalian voltage-gated Ca2+ channel that possesses two pores and twelve membrane spans.
Organellar two-pore channels (TPCs) are an interesting type of channel that, as the name suggests, has two pores.
Describes what happens when you stick a giant squid axon with electrodes and pass through an alternating current, and then notice that sometimes the voltage rises with time, and sometimes it decreases. The inductive reactance is a property of the axon and requires that it contain an inductive structure. The variation of the impedance with interpolar distance indicates that the inductance is in the membrane
The Arabidopsis two‐pore channel (AtTPC1) has been predicted to have 12 transmembrane helices and two pores (red lines).
An expansive review of bioelectrical characteristics from 1987. ... the observation of an inductance (negative capacitance) by Cole and Baker (1941) during measurements of the AC electrical properties of squid axons led directly to the concept of voltage-gated membrane pores, as embodied in the celebrated Hodgkin-Huxley (1952) treatment (Cole 1972, Jack er a1 1975), as the crucial mechanism of neurotransmission.
It is believed that TPCs, with their two pores, dimerise to form a functional channel.