Irrational number (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Irrational number" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
26th place
20th place
low place
low place
5th place
5th place
6th place
6th place
1st place
1st place
1,045th place
746th place
305th place
264th place
6,086th place
4,310th place
low place
low place
1,547th place
1,410th place
18th place
17th place
low place
low place
621st place
380th place
451st place
277th place
low place
low place
9,635th place
6,990th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Fowler, David H. (2001), "The story of the discovery of incommensurability, revisited", Neusis (10): 45–61, MR 1891736

archive.org (Global: 6th place; English: 6th place)

cambridge.org (Global: 305th place; English: 264th place)

  • Jackson, Terence (2011-07-01). "95.42 Irrational square roots of natural numbers — a geometrical approach". The Mathematical Gazette. 95 (533): 327–330. doi:10.1017/S0025557200003193. ISSN 0025-5572. S2CID 123995083.

depaul.edu (Global: 9,635th place; English: 6,990th place)

condor.depaul.edu

doi.org (Global: 2nd place; English: 2nd place)

  • Jackson, Terence (2011-07-01). "95.42 Irrational square roots of natural numbers — a geometrical approach". The Mathematical Gazette. 95 (533): 327–330. doi:10.1017/S0025557200003193. ISSN 0025-5572. S2CID 123995083.
  • Kurt Von Fritz (1945). "The Discovery of Incommensurability by Hippasus of Metapontum". Annals of Mathematics. 46 (2): 242–264. doi:10.2307/1969021. JSTOR 1969021. S2CID 126296119.
  • James R. Choike (1980). "The Pentagram and the Discovery of an Irrational Number". The Two-Year College Mathematics Journal. 11 (5): 312–316. doi:10.2307/3026893. JSTOR 3026893. S2CID 115390951.
  • Robert L. McCabe (1976). "Theodorus' Irrationality Proofs". Mathematics Magazine. 49 (4): 201–203. doi:10.1080/0025570X.1976.11976579. JSTOR 2690123. S2CID 124565880..
  • Katz, V. J. (1995). "Ideas of Calculus in Islam and India". Mathematics Magazine. 63 (3): 163–174. doi:10.2307/2691411. JSTOR 2691411.
  • Matvievskaya, Galina (1987). "The theory of quadratic irrationals in medieval Oriental mathematics". Annals of the New York Academy of Sciences. 500 (1): 253–277. Bibcode:1987NYASA.500..253M. doi:10.1111/j.1749-6632.1987.tb37206.x. S2CID 121416910. See in particular pp. 254 & 259–260.
  • Gordan, Paul (1893). "Transcendenz von e und π". Mathematische Annalen. 43 (2–3). Teubner: 222–224. doi:10.1007/bf01443647. S2CID 123203471.

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

ias.ac.in (Global: 6,086th place; English: 4,310th place)

repository.ias.ac.in

imj-prg.fr (Global: low place; English: low place)

webusers.imj-prg.fr

insa.nic.in (Global: low place; English: low place)

  • Datta, Bibhutibhusan; Singh, Awadhesh Narayan (1993). "Surds in Hindu mathematics" (PDF). Indian Journal of History of Science. 28 (3): 253–264. Archived from the original (PDF) on 2018-10-03. Retrieved 18 September 2018.

jstor.org (Global: 26th place; English: 20th place)

kuttaka.org (Global: low place; English: low place)

queuea9.wordpress.com (Global: low place; English: low place)

  • Jarden, Dov (1953). "Curiosa No. 339: A simple proof that a power of an irrational number to an irrational exponent may be rational". Scripta Mathematica. 19: 229. copy

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

  • Jackson, Terence (2011-07-01). "95.42 Irrational square roots of natural numbers — a geometrical approach". The Mathematical Gazette. 95 (533): 327–330. doi:10.1017/S0025557200003193. ISSN 0025-5572. S2CID 123995083.
  • Kurt Von Fritz (1945). "The Discovery of Incommensurability by Hippasus of Metapontum". Annals of Mathematics. 46 (2): 242–264. doi:10.2307/1969021. JSTOR 1969021. S2CID 126296119.
  • James R. Choike (1980). "The Pentagram and the Discovery of an Irrational Number". The Two-Year College Mathematics Journal. 11 (5): 312–316. doi:10.2307/3026893. JSTOR 3026893. S2CID 115390951.
  • Robert L. McCabe (1976). "Theodorus' Irrationality Proofs". Mathematics Magazine. 49 (4): 201–203. doi:10.1080/0025570X.1976.11976579. JSTOR 2690123. S2CID 124565880..
  • Matvievskaya, Galina (1987). "The theory of quadratic irrationals in medieval Oriental mathematics". Annals of the New York Academy of Sciences. 500 (1): 253–277. Bibcode:1987NYASA.500..253M. doi:10.1111/j.1749-6632.1987.tb37206.x. S2CID 121416910. See in particular pp. 254 & 259–260.
  • Gordan, Paul (1893). "Transcendenz von e und π". Mathematische Annalen. 43 (2–3). Teubner: 222–224. doi:10.1007/bf01443647. S2CID 123203471.

st-andrews.ac.uk (Global: 1,547th place; English: 1,410th place)

mathshistory.st-andrews.ac.uk

web.archive.org (Global: 1st place; English: 1st place)

wisc.edu (Global: 1,045th place; English: 746th place)

sprott.physics.wisc.edu

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

  • Jackson, Terence (2011-07-01). "95.42 Irrational square roots of natural numbers — a geometrical approach". The Mathematical Gazette. 95 (533): 327–330. doi:10.1017/S0025557200003193. ISSN 0025-5572. S2CID 123995083.
  • Boyer (1991). "China and India". A History of Mathematics (2nd ed.). Wiley. p. 208. ISBN 0471093742. OCLC 414892. It has been claimed also that the first recognition of incommensurables appears in India during the Sulbasutra period, but such claims are not well substantiated. The case for early Hindu awareness of incommensurable magnitudes is rendered most unlikely by the lack of evidence that Indian mathematicians of that period had come to grips with fundamental concepts.

zenodo.org (Global: 621st place; English: 380th place)