Anderson & Fuller 1992, Proposition 9.4. Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2nd ed.), New York, NY: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN0-387-97845-3, MR1245487; NB: this reference, nominally, considers a semisimple module over a ring not over a group but this is not a material difference (the abstract part of the discussion goes through for groups as well).
Anderson & Fuller 1992, Theorem 9.6. Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2nd ed.), New York, NY: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN0-387-97845-3, MR1245487; NB: this reference, nominally, considers a semisimple module over a ring not over a group but this is not a material difference (the abstract part of the discussion goes through for groups as well).
Anderson & Fuller 1992, Lemma 9.2. Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2nd ed.), New York, NY: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN0-387-97845-3, MR1245487; NB: this reference, nominally, considers a semisimple module over a ring not over a group but this is not a material difference (the abstract part of the discussion goes through for groups as well).
Anderson & Fuller 1992, Proposition 9.4. Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2nd ed.), New York, NY: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN0-387-97845-3, MR1245487; NB: this reference, nominally, considers a semisimple module over a ring not over a group but this is not a material difference (the abstract part of the discussion goes through for groups as well).
Anderson & Fuller 1992, Theorem 9.6. Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2nd ed.), New York, NY: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN0-387-97845-3, MR1245487; NB: this reference, nominally, considers a semisimple module over a ring not over a group but this is not a material difference (the abstract part of the discussion goes through for groups as well).
Anderson & Fuller 1992, Lemma 9.2. Anderson, Frank W.; Fuller, Kent R. (1992), Rings and categories of modules, Graduate Texts in Mathematics, vol. 13 (2nd ed.), New York, NY: Springer-Verlag, pp. x+376, doi:10.1007/978-1-4612-4418-9, ISBN0-387-97845-3, MR1245487; NB: this reference, nominally, considers a semisimple module over a ring not over a group but this is not a material difference (the abstract part of the discussion goes through for groups as well).
Klimyk, A. U.; Gavrilik, A. M. (1979). "Representation matrix elements and Clebsch–Gordan coefficients of the semisimple Lie groups". Journal of Mathematical Physics. 20 (1624): 1624–1642. Bibcode:1979JMP....20.1624K. doi:10.1063/1.524268.
harvard.edu
ui.adsabs.harvard.edu
Klimyk, A. U.; Gavrilik, A. M. (1979). "Representation matrix elements and Clebsch–Gordan coefficients of the semisimple Lie groups". Journal of Mathematical Physics. 20 (1624): 1624–1642. Bibcode:1979JMP....20.1624K. doi:10.1063/1.524268.