K-theory of a category (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "K-theory of a category" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
69th place
59th place
5th place
5th place
230th place
214th place
3rd place
3rd place
18th place
17th place
low place
8,775th place
9,437th place
low place
207th place
136th place

arxiv.org (Global: 69th place; English: 59th place)

  • Tabuada, Goncalo (2008). "Higher K-theory via universal invariants". Duke Mathematical Journal. 145 (1): 121–206. arXiv:0706.2420. doi:10.1215/00127094-2008-049. S2CID 8886393.
  • *Blumberg, Andrew J; Gepner, David; Tabuada, Gonçalo (2013-04-18). "A universal characterization of higher algebraic K-theory". Geometry & Topology. 17 (2): 733–838. arXiv:1001.2282. doi:10.2140/gt.2013.17.733. ISSN 1364-0380. S2CID 115177650.
  • Tabuada, Gonçalo (2005). "Invariants additifs de dg-catégories". International Mathematics Research Notices. 2005 (53): 3309–3339. arXiv:math/0507227. Bibcode:2005math......7227T. doi:10.1155/IMRN.2005.3309. S2CID 119162782.{{cite journal}}: CS1 maint: unflagged free DOI (link)

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

  • Tabuada, Goncalo (2008). "Higher K-theory via universal invariants". Duke Mathematical Journal. 145 (1): 121–206. arXiv:0706.2420. doi:10.1215/00127094-2008-049. S2CID 8886393.
  • *Blumberg, Andrew J; Gepner, David; Tabuada, Gonçalo (2013-04-18). "A universal characterization of higher algebraic K-theory". Geometry & Topology. 17 (2): 733–838. arXiv:1001.2282. doi:10.2140/gt.2013.17.733. ISSN 1364-0380. S2CID 115177650.
  • Staffeldt, Ross (1989). "On fundamental theorems of algebraic K-theory". K-theory. 2 (4): 511–532. doi:10.1007/bf00533280.
  • Tabuada, Gonçalo (2005). "Invariants additifs de dg-catégories". International Mathematics Research Notices. 2005 (53): 3309–3339. arXiv:math/0507227. Bibcode:2005math......7227T. doi:10.1155/IMRN.2005.3309. S2CID 119162782.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Schwänzl, R.; Vogt, R. M.; Waldhausen, F. (October 2000). "Topological Hochschild Homology". Journal of the London Mathematical Society. 62 (2): 345–356. CiteSeerX 10.1.1.1020.4419. doi:10.1112/s0024610700008929. ISSN 1469-7750. S2CID 122754654.

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

ncatlab.org (Global: low place; English: 8,775th place)

psu.edu (Global: 207th place; English: 136th place)

citeseerx.ist.psu.edu

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

  • Tabuada, Goncalo (2008). "Higher K-theory via universal invariants". Duke Mathematical Journal. 145 (1): 121–206. arXiv:0706.2420. doi:10.1215/00127094-2008-049. S2CID 8886393.
  • *Blumberg, Andrew J; Gepner, David; Tabuada, Gonçalo (2013-04-18). "A universal characterization of higher algebraic K-theory". Geometry & Topology. 17 (2): 733–838. arXiv:1001.2282. doi:10.2140/gt.2013.17.733. ISSN 1364-0380. S2CID 115177650.
  • Tabuada, Gonçalo (2005). "Invariants additifs de dg-catégories". International Mathematics Research Notices. 2005 (53): 3309–3339. arXiv:math/0507227. Bibcode:2005math......7227T. doi:10.1155/IMRN.2005.3309. S2CID 119162782.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  • Schwänzl, R.; Vogt, R. M.; Waldhausen, F. (October 2000). "Topological Hochschild Homology". Journal of the London Mathematical Society. 62 (2): 345–356. CiteSeerX 10.1.1.1020.4419. doi:10.1112/s0024610700008929. ISSN 1469-7750. S2CID 122754654.

uchicago.edu (Global: 230th place; English: 214th place)

math.uchicago.edu

uni-bielefeld.de (Global: 9,437th place; English: low place)

pub.uni-bielefeld.de

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org