Kepler conjecture (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Kepler conjecture" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
69th place
59th place
11th place
8th place
102nd place
76th place
120th place
125th place
896th place
674th place
6th place
6th place
451st place
277th place
low place
low place
4,942nd place
4,061st place
18th place
17th place
6,413th place
4,268th place

ams.org

mathscinet.ams.org

archive.org

arxiv.org

code.google.com

doi.org

  • Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Tat Dat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Vu, Ky; Zumkeller, Roland (29 May 2017). "A Formal Proof of the Kepler Conjecture". Forum of Mathematics, Pi. 5: e2. doi:10.1017/fmp.2017.1. hdl:2066/176365.
  • Hales, Thomas C. (June 1994). "The Status of the Kepler Conjecture". The Mathematical Intelligencer. 16 (3): 47–58. doi:10.1007/BF03024356. S2CID 123375854.
  • Fejes Tóth 1953, p. 238. Fejes Tóth, L. (1953), Lagerungen in der Ebene, auf der Kugel und im Raum, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXV, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-65234-9, ISBN 978-3-642-65235-6, MR 0057566
  • Hales, Thomas C. (20 May 2002). "The Honeycomb Conjecture". Discrete & Computational Geometry. 25: 1–22. arXiv:math/9906042. doi:10.1007/s004540010071. S2CID 14849112.
  • Hales, Thomas C.; McLaughlin, Sean (2010). "The Dodecahedral Conjecture". Journal of the American Mathematical Society. 23 (2): 299–344. arXiv:math.MG/9811079. Bibcode:2010JAMS...23..299H. doi:10.1090/S0894-0347-09-00647-X.

handle.net

hdl.handle.net

  • Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Tat Dat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Vu, Ky; Zumkeller, Roland (29 May 2017). "A Formal Proof of the Kepler Conjecture". Forum of Mathematics, Pi. 5: e2. doi:10.1017/fmp.2017.1. hdl:2066/176365.

harvard.edu

ui.adsabs.harvard.edu

pittsburghquarterly.com

quantamagazine.org

researchgate.net

scientificamerican.com

  • Leutwyler, Kristin (1998-09-14). "Stack 'em Tight". Scientific American. Retrieved 2021-11-15.

semanticscholar.org

api.semanticscholar.org