Kepler–Poinsot polyhedron (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Kepler–Poinsot polyhedron" in English language version.

refsWebsite
Global rank English rank
3rd place
3rd place
2nd place
2nd place
26th place
20th place
low place
low place
low place
low place
6th place
6th place

archive.org (Global: 6th place; English: 6th place)

books.google.com (Global: 3rd place; English: 3rd place)

bridgesmathart.org (Global: low place; English: low place)

archive.bridgesmathart.org

  • Huylebrouck, Dirk (2016). "Euler-Cayley Formula for 'Unusual' Polyhedra" (PDF). In Torrence, Eve; Torrence, Bruce; Séquin, Carlo H.; McKenna, Douglas; Fenyvesi, Kristóf; Sarhangi, Reza (eds.). Bridges Finland: Mathematics, Music, Art, Architecture, Education, Culture. Phoenix, Arizona: Tessellations Publishing.

doi.org (Global: 2nd place; English: 2nd place)

  • Barnes, John (2012). Gems of Geometry (2nd ed.). Springer. p. 46. doi:10.1007/978-3-642-30964-9. ISBN 978-3-642-30964-9.
  • Inchbald, Guy (2006). "Facetting Diagrams". The Mathematical Gazette. 90 (518): 253–261. doi:10.1017/S0025557200179653. JSTOR 40378613.
  • Dubrovin, Boris (1999). "Painlevé Transcendents in Two-Dimensional Topological Field Theory". In Conte, Robert (ed.). The Painlevé Property: One Century Later. p. 403. doi:10.1007/978-1-4612-1532-5. ISBN 978-1-4612-1532-5.
  • Coxeter, H. S. M. (2013). "Regular and semiregular polyhedra". In Senechal, Marjorie (ed.). Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination (2nd ed.). Springer. pp. 41–52. doi:10.1007/978-0-387-92714-5. ISBN 978-0-387-92713-8. See in particular p. 42.
  • Innocenzi, Plinio (2019). The Innovators Behind Leonardo: The True Story of the Scientific and Technological Renaissance. p. 256–257. doi:10.1007/978-3-319-90449-8. ISBN 978-3-319-90449-8.
  • Scriba, Christoph; Schreiber, Peter (2015). 5000 Years of Geometry: Mathematics in History and Culture. Springer. p. 305. doi:10.1007/978-3-0348-0898-9. ISBN 978-3-0348-0898-9.

jstor.org (Global: 26th place; English: 20th place)

wikipedia.org (Global: low place; English: low place)

fr.wikipedia.org