Zeilberger, Doron; Zudilin, Wadim (5 November 2020). "The irrationality measure of π is at most 7.103205334137…". Moscow Journal of Combinatorics and Number Theory. 9 (4). Mathematical Sciences Publishers: 407–419. arXiv:1912.06345. doi:10.2140/moscow.2020.9.407. ISSN2640-7361. S2CID209370638.
Zeilberger, Doron; Zudilin, Wadim (5 November 2020). "The irrationality measure of π is at most 7.103205334137…". Moscow Journal of Combinatorics and Number Theory. 9 (4). Mathematical Sciences Publishers: 407–419. arXiv:1912.06345. doi:10.2140/moscow.2020.9.407. ISSN2640-7361. S2CID209370638.
Zeilberger, Doron; Zudilin, Wadim (5 November 2020). "The irrationality measure of π is at most 7.103205334137…". Moscow Journal of Combinatorics and Number Theory. 9 (4). Mathematical Sciences Publishers: 407–419. arXiv:1912.06345. doi:10.2140/moscow.2020.9.407. ISSN2640-7361. S2CID209370638.
Berggren, Lennart; Borwein, Jonathan M.; Borwein, Peter B.; Mahler, Kurt (2004). Pi, a source book. New York: Springer. pp. 306–318. ISBN0-387-20571-3. OCLC53814116.
Zeilberger, Doron; Zudilin, Wadim (5 November 2020). "The irrationality measure of π is at most 7.103205334137…". Moscow Journal of Combinatorics and Number Theory. 9 (4). Mathematical Sciences Publishers: 407–419. arXiv:1912.06345. doi:10.2140/moscow.2020.9.407. ISSN2640-7361. S2CID209370638.