Analysis of information sources in references of the Wikipedia article "LSD" in English language version.
Subsequent experiments on volunteers of the Sandoz research laboratories confirmed the extraordinary activity of lysergic acid diethylamide on the human psyche. These showed that the effective oral dose of LSD in human beings is 0.03—0.05 mg. [...] LSD is by far the most active and most specific psychotomimetic. It is about 5,000—10,000 times more active than mescaline or about 100–200 times more active than psilocybin.
Several other classes of drugs are categorized as drugs of abuse but rarely produce compulsive use. These include psychedelic agents, such as lysergic acid diethylamide (LSD)
Subsequent experiments on volunteers of the Sandoz research laboratories confirmed the extraordinary activity of lysergic acid diethylamide on the human psyche. These showed that the effective oral dose of LSD in human beings is 0.03—0.05 mg. [...] LSD is by far the most active and most specific psychotomimetic. It is about 5,000—10,000 times more active than mescaline or about 100–200 times more active than psilocybin.
Hallucinogen abuse and dependence are known complications resulting from ... LSD and psilocybin. Users do not experience withdrawal symptoms, but the general criteria for substance abuse and dependence otherwise apply. Dependence is estimated in approximately 2 % of recent-onset users
Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)The largest number of structural analogs of LSD that have been prepared involve the opening of one or more of the rings of the parent lysergic acid system. [...] A recent review covers this chemistry (Campaigne and Knapp, 1971), but there is apparently no human psychopharmacology as yet known.
We now have molecular-level details regarding how psychedelic drugs interact with and activate 5-HT2A receptors (39) (Figure 2B). Studies on a related serotonin receptor (5-HT2B) have clarified how LSD can stabilize distinct signaling complexes (40, 41). A key finding of these studies was the discovery that once LSD binds to the 5-HT2A receptor, a lid is formed over the binding pocket, which "traps" LSD for several hours (39, 40) (Figure 2B). These findings imply that at least part of the reason for the long duration of action of drugs like LSD is the trapping of the receptor via conformational changes that occur after drug binding. These studies also showed that this prolonged action of LSD is due in part to a specific residue within the binding pocket, which is found in humans but not in mice or rats (39). This residue (Ser242) also is essential for the high-affinity interactions of LSD, psilocybin, and perhaps other such drugs at the human and nonhuman primate 5-HT2A receptors.
It is rapidly metabolized to the following five metabolites which have been identified in urine or blood from human users: N-demethyl-LSD (nor-LSD), 2-oxoLSD, 2-oxo-3-hydroxy-LSD, 13-hydroxyLSD and 14-hydroxy-LSD [187–189]. The 13- and 14-hydroxy metabolites are additionally excreted as glucuronides [188]. [...] 2-oxo-3-hydroxy-LSD was shown to be the main human urinary metabolite with concentrations four- to 40-times higher than that of LSD [187,188,191]. As concluded by Yu in his review on indolalkylamines, almost nothing is known regarding the contribution of specific drug-metabolizing enzymes to the production of individual LSD metabolites in humans.
[LSD] is metabolized to the following five metabolites: N-demethyl-LSD (nor-LSD), 2-oxo-LSD, 2-oxo-3-hydroxy-LSD, 13-hydroxy-LSD, and 14-hydroxy-LSD [72–74]. The 13- and 14-hydroxy metabolites are additionally excreted as glucuronides [74]. 2-Oxo-3-hydroxy-LSD was shown to be the main human urinary metabolite with concentrations 4–40 times higher than that of LSD [73–75]. In incubations of LSD with human liver microsomes and hepatocytes, 2,3-dihydroxy-LSD could be identified [71]. So far, the contribution and importance of specific enzymes in the formation of the LSD main metabolites such as 2-oxo-3-hydroxy-LSD still remains unclear.
[LSD] is metabolized to the following five metabolites: N-demethyl-LSD (nor-LSD), 2-oxo-LSD, 2-oxo-3-hydroxy-LSD, 13-hydroxy-LSD, and 14-hydroxy-LSD [72–74]. The 13- and 14-hydroxy metabolites are additionally excreted as glucuronides [74]. 2-Oxo-3-hydroxy-LSD was shown to be the main human urinary metabolite with concentrations 4–40 times higher than that of LSD [73–75]. In incubations of LSD with human liver microsomes and hepatocytes, 2,3-dihydroxy-LSD could be identified [71]. So far, the contribution and importance of specific enzymes in the formation of the LSD main metabolites such as 2-oxo-3-hydroxy-LSD still remains unclear.
In 1938 the Swiss chemist Albert Hofmann produced lysergic acid diethylamide (LSD)—the first, and most prominent, of these chemically synthesized agents—in the course of a systematic investigation of partially synthetic amides of lysergic acid in the Sandoz Pharmaceutical Laboratories in Basel (Hofmann 1970). [Taking] LSD by accident in 1943, Hofmann discovered its psychoactivity. He then experimented with it on himself and found that it produced a peculiar restlessness, extreme activity of the imagination, and an uninterrupted stream of images. Hofmann did not publish the results of his experiment, though he became quite famous later. Hofmann and Arthur Stoll, the head of the Sandoz pharmaceutical laboratory in Basle, published the first paper on the synthesis of LSD in 1943, while Stoll went on to publish the first paper on the effects of lysergic diethylamide acid in 1947. [...] Stoll, Arthur and Hofmann, Albert. 1943. Partialsynthese von Alkaloiden vom Typus des Ergobasins. Helv. Chim. Acta 26:944. Stoll, Arthur. 1947. Lysergsäure-diäthylamid, ein Phantastikum aus der Mutterkorngruppe. Schweiz. Arch. Neurol. Psychiat. 60:279. [The first paper on the hallucinogenic effect of LSD.]
Indeed, the potency of LSD at the 5-HT2A receptor is not as great as that of some of the amphetamine hallucinogens such as DOB or DOI, yet its human potency is about ten times greater. [...] Furthermore, there is a cavity within these receptors that accommodates and is complementary to the activating drug, in this case LSD. What we are forced to conclude is that the area within the receptor that binds to the diethylamide function of LSD is a specific region that must be just large enough to contain the diethyl groups. [...]
Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself.
High Times: Why was it four years from your discovery of the psychic effects of LSD [in 1943] until your report was published? [...] Hofmann: [...] After confirmation of the action of this extraordinary compound by volunteers of the Sandoz staff, Professor Arthur Stoll, who was then head of the Sandoz pharmaceutical department, asked me if I would permit his son, Werner A. Stoll—who was starting his career at the psychiatric hospital of the University of Zurich—to submit this new agent to a fundamental psychiatric study on normal volunteers and on psychiatric patients. This investigation took a rather long time, [...] This excellent and comprehensive study was not published until 1947.
The largest number of structural analogs of LSD that have been prepared involve the opening of one or more of the rings of the parent lysergic acid system. [...] A recent review covers this chemistry (Campaigne and Knapp, 1971), but there is apparently no human psychopharmacology as yet known.
Table 5.2 Binding affinities using 3 H-LSD at 5-HT2A EL2 mutants [...] Table B.1 Binding affinities for 5-HT2A, 5-HT2C, 5-HT1A receptors using 3 H-LSD [...]Alt URL
Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)We now have molecular-level details regarding how psychedelic drugs interact with and activate 5-HT2A receptors (39) (Figure 2B). Studies on a related serotonin receptor (5-HT2B) have clarified how LSD can stabilize distinct signaling complexes (40, 41). A key finding of these studies was the discovery that once LSD binds to the 5-HT2A receptor, a lid is formed over the binding pocket, which "traps" LSD for several hours (39, 40) (Figure 2B). These findings imply that at least part of the reason for the long duration of action of drugs like LSD is the trapping of the receptor via conformational changes that occur after drug binding. These studies also showed that this prolonged action of LSD is due in part to a specific residue within the binding pocket, which is found in humans but not in mice or rats (39). This residue (Ser242) also is essential for the high-affinity interactions of LSD, psilocybin, and perhaps other such drugs at the human and nonhuman primate 5-HT2A receptors.
It is rapidly metabolized to the following five metabolites which have been identified in urine or blood from human users: N-demethyl-LSD (nor-LSD), 2-oxoLSD, 2-oxo-3-hydroxy-LSD, 13-hydroxyLSD and 14-hydroxy-LSD [187–189]. The 13- and 14-hydroxy metabolites are additionally excreted as glucuronides [188]. [...] 2-oxo-3-hydroxy-LSD was shown to be the main human urinary metabolite with concentrations four- to 40-times higher than that of LSD [187,188,191]. As concluded by Yu in his review on indolalkylamines, almost nothing is known regarding the contribution of specific drug-metabolizing enzymes to the production of individual LSD metabolites in humans.
{{cite journal}}
: CS1 maint: DOI inactive as of November 2024 (link)On the West Coast in the early 1960s LSD and morning glory seeds were readily available, so I sampled those, too.
Subsequent experiments on volunteers of the Sandoz research laboratories confirmed the extraordinary activity of lysergic acid diethylamide on the human psyche. These showed that the effective oral dose of LSD in human beings is 0.03—0.05 mg. [...] LSD is by far the most active and most specific psychotomimetic. It is about 5,000—10,000 times more active than mescaline or about 100–200 times more active than psilocybin.
Table 5.2 Binding affinities using 3 H-LSD at 5-HT2A EL2 mutants [...] Table B.1 Binding affinities for 5-HT2A, 5-HT2C, 5-HT1A receptors using 3 H-LSD [...]Alt URL
In 1938 the Swiss chemist Albert Hofmann produced lysergic acid diethylamide (LSD)—the first, and most prominent, of these chemically synthesized agents—in the course of a systematic investigation of partially synthetic amides of lysergic acid in the Sandoz Pharmaceutical Laboratories in Basel (Hofmann 1970). [Taking] LSD by accident in 1943, Hofmann discovered its psychoactivity. He then experimented with it on himself and found that it produced a peculiar restlessness, extreme activity of the imagination, and an uninterrupted stream of images. Hofmann did not publish the results of his experiment, though he became quite famous later. Hofmann and Arthur Stoll, the head of the Sandoz pharmaceutical laboratory in Basle, published the first paper on the synthesis of LSD in 1943, while Stoll went on to publish the first paper on the effects of lysergic diethylamide acid in 1947. [...] Stoll, Arthur and Hofmann, Albert. 1943. Partialsynthese von Alkaloiden vom Typus des Ergobasins. Helv. Chim. Acta 26:944. Stoll, Arthur. 1947. Lysergsäure-diäthylamid, ein Phantastikum aus der Mutterkorngruppe. Schweiz. Arch. Neurol. Psychiat. 60:279. [The first paper on the hallucinogenic effect of LSD.]
We now have molecular-level details regarding how psychedelic drugs interact with and activate 5-HT2A receptors (39) (Figure 2B). Studies on a related serotonin receptor (5-HT2B) have clarified how LSD can stabilize distinct signaling complexes (40, 41). A key finding of these studies was the discovery that once LSD binds to the 5-HT2A receptor, a lid is formed over the binding pocket, which "traps" LSD for several hours (39, 40) (Figure 2B). These findings imply that at least part of the reason for the long duration of action of drugs like LSD is the trapping of the receptor via conformational changes that occur after drug binding. These studies also showed that this prolonged action of LSD is due in part to a specific residue within the binding pocket, which is found in humans but not in mice or rats (39). This residue (Ser242) also is essential for the high-affinity interactions of LSD, psilocybin, and perhaps other such drugs at the human and nonhuman primate 5-HT2A receptors.
LSD produced subjective drug effects that lasted up to 12h (Fig. 3a) and correlated well with the concentrations of LSD in the blood plasma over time (Fig. 3b and c). The half-life of LSD in plasma was 3.5 h. In contrast to LSD, the half-life of MDMA is longer (8h) but the effects of MDMA last only up to 6h despite the continued presence of the substance in the body (Fig. 3d). Thus, there is marked acute tolerance to the effects of MDMA. [...] Fig. 3: Pharmacokinetics-Pharmacodynamics of LSD. LSD effects last up to 12h (a) corresponding to its plasma-concentration time curve (b) and exhibiting no hysteresis in the LSD concentration-effect plot (c). In contrast, the MDMA concentration-effect plot shows pronounced hysteresis consistent with acute tolerance (d).
Several other classes of drugs are categorized as drugs of abuse but rarely produce compulsive use. These include psychedelic agents, such as lysergic acid diethylamide (LSD)
Although LSD is the most well-known psychedelic, only a very few structural modifications can be made to its structure, and nearly all of those attenuate its activity by about an order of magnitude. In addition, there is a paucity of structure–activity data for ergolines, principally due to the synthetic difficulty inherent in their chemistry. [...] Although LSD is the most potent psychedelic agent in humans, its affinity and potency at the human 5-HT2A receptor is rather unremarkable compared with much simpler molecules such as DOI. [...] Because of its structural complexity and tedious approaches to its total synthesis, only a few structural modifications of LSD have been reported. [...] Unfortunately, only a few of them have been assessed in human psychopharmacology, most being much less active than LSD itself.
Table 5.2 Binding affinities using 3 H-LSD at 5-HT2A EL2 mutants [...] Table B.1 Binding affinities for 5-HT2A, 5-HT2C, 5-HT1A receptors using 3 H-LSD [...]Alt URL
In 1938 the Swiss chemist Albert Hofmann produced lysergic acid diethylamide (LSD)—the first, and most prominent, of these chemically synthesized agents—in the course of a systematic investigation of partially synthetic amides of lysergic acid in the Sandoz Pharmaceutical Laboratories in Basel (Hofmann 1970). [Taking] LSD by accident in 1943, Hofmann discovered its psychoactivity. He then experimented with it on himself and found that it produced a peculiar restlessness, extreme activity of the imagination, and an uninterrupted stream of images. Hofmann did not publish the results of his experiment, though he became quite famous later. Hofmann and Arthur Stoll, the head of the Sandoz pharmaceutical laboratory in Basle, published the first paper on the synthesis of LSD in 1943, while Stoll went on to publish the first paper on the effects of lysergic diethylamide acid in 1947. [...] Stoll, Arthur and Hofmann, Albert. 1943. Partialsynthese von Alkaloiden vom Typus des Ergobasins. Helv. Chim. Acta 26:944. Stoll, Arthur. 1947. Lysergsäure-diäthylamid, ein Phantastikum aus der Mutterkorngruppe. Schweiz. Arch. Neurol. Psychiat. 60:279. [The first paper on the hallucinogenic effect of LSD.]
High Times: Why was it four years from your discovery of the psychic effects of LSD [in 1943] until your report was published? [...] Hofmann: [...] After confirmation of the action of this extraordinary compound by volunteers of the Sandoz staff, Professor Arthur Stoll, who was then head of the Sandoz pharmaceutical department, asked me if I would permit his son, Werner A. Stoll—who was starting his career at the psychiatric hospital of the University of Zurich—to submit this new agent to a fundamental psychiatric study on normal volunteers and on psychiatric patients. This investigation took a rather long time, [...] This excellent and comprehensive study was not published until 1947.
Like Herbert, many scientists and engineers also report heightened states of creativity while using LSD. During a press conference on Friday, Hofmann revealed that he was told by Nobel-prize-winning chemist Kary Mullis that LSD had helped him develop the polymerase chain reaction that helps amplify specific DNA sequences.
On the West Coast in the early 1960s LSD and morning glory seeds were readily available, so I sampled those, too.
[LSD] is metabolized to the following five metabolites: N-demethyl-LSD (nor-LSD), 2-oxo-LSD, 2-oxo-3-hydroxy-LSD, 13-hydroxy-LSD, and 14-hydroxy-LSD [72–74]. The 13- and 14-hydroxy metabolites are additionally excreted as glucuronides [74]. 2-Oxo-3-hydroxy-LSD was shown to be the main human urinary metabolite with concentrations 4–40 times higher than that of LSD [73–75]. In incubations of LSD with human liver microsomes and hepatocytes, 2,3-dihydroxy-LSD could be identified [71]. So far, the contribution and importance of specific enzymes in the formation of the LSD main metabolites such as 2-oxo-3-hydroxy-LSD still remains unclear.
[LSD] is metabolized to the following five metabolites: N-demethyl-LSD (nor-LSD), 2-oxo-LSD, 2-oxo-3-hydroxy-LSD, 13-hydroxy-LSD, and 14-hydroxy-LSD [72–74]. The 13- and 14-hydroxy metabolites are additionally excreted as glucuronides [74]. 2-Oxo-3-hydroxy-LSD was shown to be the main human urinary metabolite with concentrations 4–40 times higher than that of LSD [73–75]. In incubations of LSD with human liver microsomes and hepatocytes, 2,3-dihydroxy-LSD could be identified [71]. So far, the contribution and importance of specific enzymes in the formation of the LSD main metabolites such as 2-oxo-3-hydroxy-LSD still remains unclear.
Like Herbert, many scientists and engineers also report heightened states of creativity while using LSD. During a press conference on Friday, Hofmann revealed that he was told by Nobel-prize-winning chemist Kary Mullis that LSD had helped him develop the polymerase chain reaction that helps amplify specific DNA sequences.
Subsequent experiments on volunteers of the Sandoz research laboratories confirmed the extraordinary activity of lysergic acid diethylamide on the human psyche. These showed that the effective oral dose of LSD in human beings is 0.03—0.05 mg. [...] LSD is by far the most active and most specific psychotomimetic. It is about 5,000—10,000 times more active than mescaline or about 100–200 times more active than psilocybin.
Indeed, the potency of LSD at the 5-HT2A receptor is not as great as that of some of the amphetamine hallucinogens such as DOB or DOI, yet its human potency is about ten times greater. [...] Furthermore, there is a cavity within these receptors that accommodates and is complementary to the activating drug, in this case LSD. What we are forced to conclude is that the area within the receptor that binds to the diethylamide function of LSD is a specific region that must be just large enough to contain the diethyl groups. [...]