Scott, TC; Babb, JF; Dalgarno, A; Morgan, John D (Aug 15, 1993). "The calculation of exchange forces: General results and specific models". J. Chem. Phys. 99 (4). American Institute of Physics: 2841–2854. Bibcode:1993JChPh..99.2841S. doi:10.1063/1.465193. ISSN0021-9606.
Robert M., Corless; David J., Jeffrey; Donald E., Knuth (1997). "A sequence of series for the Lambert W function". Proceedings of the 1997 international symposium on Symbolic and algebraic computation - ISSAC '97. pp. 197–204. doi:10.1145/258726.258783. ISBN978-0897918756. S2CID6274712.
More, A. A. (2006). "Analytical solutions for the Colebrook and White equation and for pressure drop in ideal gas flow in pipes". Chemical Engineering Science. 61 (16): 5515–5519. Bibcode:2006ChEnS..61.5515M. doi:10.1016/j.ces.2006.04.003.
Braun, Artur; Baertsch, Martin; Schnyder, Bernhard; Koetz, Ruediger (2000). "A Model for the film growth in samples with two moving boundaries – An Application and Extension of the Unreacted-Core Model". Chem Eng Sci. 55 (22): 5273–5282. doi:10.1016/S0009-2509(00)00143-3.
Scott, TC; Babb, JF; Dalgarno, A; Morgan, John D (Aug 15, 1993). "The calculation of exchange forces: General results and specific models". J. Chem. Phys. 99 (4). American Institute of Physics: 2841–2854. Bibcode:1993JChPh..99.2841S. doi:10.1063/1.465193. ISSN0021-9606.
More, A. A. (2006). "Analytical solutions for the Colebrook and White equation and for pressure drop in ideal gas flow in pipes". Chemical Engineering Science. 61 (16): 5515–5519. Bibcode:2006ChEnS..61.5515M. doi:10.1016/j.ces.2006.04.003.
https://isa-afp.org/entries/Lambert_W.html Note: although one of the assumptions of the relevant lemma states that x must be > 1/e, inspection of said lemma reveals that this assumption is unused. The lower bound is in fact x > 0. The reason for the branch switch at e is simple: for x > 1 there are always two solutions, −ln x and another one that you'd get from the x on the other side of e that would feed the same value to W; these must crossover at x = e: [1] Wn cannot distinguish a value of ln x/x from an x < e from the same value from the other x > e, so it cannot flip the order of its return values.
Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J. (1993). "Lambert's function in Maple". The Maple Technical Newsletter. 9: 12–22. CiteSeerX10.1.1.33.2556.
Robert M., Corless; David J., Jeffrey; Donald E., Knuth (1997). "A sequence of series for the Lambert W function". Proceedings of the 1997 international symposium on Symbolic and algebraic computation - ISSAC '97. pp. 197–204. doi:10.1145/258726.258783. ISBN978-0897918756. S2CID6274712.
Colla, Pietro (2014). "A New Analytical Method for the Motion of a Two-Phase Interface in a Tilted Porous Medium". PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University. SGP-TR-202.([2])
https://isa-afp.org/entries/Lambert_W.html Note: although one of the assumptions of the relevant lemma states that x must be > 1/e, inspection of said lemma reveals that this assumption is unused. The lower bound is in fact x > 0. The reason for the branch switch at e is simple: for x > 1 there are always two solutions, −ln x and another one that you'd get from the x on the other side of e that would feed the same value to W; these must crossover at x = e: [1] Wn cannot distinguish a value of ln x/x from an x < e from the same value from the other x > e, so it cannot flip the order of its return values.
worldcat.org
search.worldcat.org
Scott, TC; Babb, JF; Dalgarno, A; Morgan, John D (Aug 15, 1993). "The calculation of exchange forces: General results and specific models". J. Chem. Phys. 99 (4). American Institute of Physics: 2841–2854. Bibcode:1993JChPh..99.2841S. doi:10.1063/1.465193. ISSN0021-9606.