Laplace transform (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Laplace transform" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
3rd place
3rd place
451st place
277th place
513th place
537th place
6th place
6th place
low place
low place
5th place
5th place
102nd place
76th place
621st place
380th place
32nd place
21st place
1st place
1st place
9th place
13th place
18th place
17th place
1,923rd place
1,068th place

ams.org

mathscinet.ams.org

archive.org

books.google.com

doi.org

  • Lynn, Paul A. (1986). "The Laplace Transform and the z-transform". Electronic Signals and Systems. London: Macmillan Education UK. pp. 225–272. doi:10.1007/978-1-349-18461-3_6. ISBN 978-0-333-39164-8. Laplace Transform and the z-transform are closely related to the Fourier Transform. Laplace Transform is somewhat more general in scope than the Fourier Transform, and is widely used by engineers for describing continuous circuits and systems, including automatic control systems.
  • Lerch, Mathias (1903), "Sur un point de la théorie des fonctions génératrices d'Abel" [Proof of the inversion formula], Acta Mathematica (in French), 27: 339–351, doi:10.1007/BF02421315, hdl:10338.dmlcz/501554
  • Bromwich, Thomas J. (1916), "Normal coordinates in dynamical systems", Proceedings of the London Mathematical Society, 15: 401–448, doi:10.1112/plms/s2-15.1.401
  • Salem, M.; Seaton, M. J. (1974), "I. Continuum spectra and brightness contours", Monthly Notices of the Royal Astronomical Society, 167: 493–510, Bibcode:1974MNRAS.167..493S, doi:10.1093/mnras/167.3.493, and
    Salem, M. (1974), "II. Three-dimensional models", Monthly Notices of the Royal Astronomical Society, 167: 511–516, Bibcode:1974MNRAS.167..511S, doi:10.1093/mnras/167.3.511
  • S. Ikehara (1931), "An extension of Landau's theorem in the analytic theory of numbers", Journal of Mathematics and Physics of the Massachusetts Institute of Technology, 10 (1–4): 1–12, doi:10.1002/sapm19311011, Zbl 0001.12902

ghostarchive.org

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

lamar.edu

tutorial.math.lamar.edu

web.archive.org

wolfram.com

mathworld.wolfram.com

worldcat.org

search.worldcat.org

  • Jaynes, E. T. (Edwin T.) (2003). Probability theory : the logic of science. Bretthorst, G. Larry. Cambridge, UK: Cambridge University Press. ISBN 0511065892. OCLC 57254076.

youtube.com

zbmath.org

  • S. Ikehara (1931), "An extension of Landau's theorem in the analytic theory of numbers", Journal of Mathematics and Physics of the Massachusetts Institute of Technology, 10 (1–4): 1–12, doi:10.1002/sapm19311011, Zbl 0001.12902

zenodo.org