Lemon battery (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Lemon battery" in English language version.

refsWebsite
Global rank English rank
3rd place
3rd place
1st place
1st place
2nd place
2nd place
18th place
17th place
9th place
13th place
6th place
6th place
low place
low place
3,753rd place
2,311th place
low place
low place
120th place
125th place
low place
low place
20th place
30th place
low place
low place
low place
low place
low place
low place
5th place
5th place
low place
low place
5,600th place
3,080th place
12th place
11th place

archive.org

bbc.com

books.google.com

  • Oon, Hock Leong (2007). Chemistry Expression: An Inquiry Approach. Panpac Education Pte Ltd. p. 236. ISBN 978-981-271-162-5.
  • Lisinska, G.; Leszczynski, W. (1989). Potato Science and Technology. Springer. p. 286. ISBN 9781851663071.
  • Sorey, Timothy; Hunt, Vanessa; Balandova, Evguenia; Palmquist, Bruce (2012). "Juan's Dilemma: A New Twist on the Old Lemon Battery". In Metz, Steve (ed.). Fuel for Thought: Building Energy Awareness in Grades 9-12. NSTA Press. pp. 91–98. ISBN 9781936137206. Guide to lemon battery experiments for science teachers, including both fabrication notes and educational outcomes.
  • Naidu, M. S.; Kamakshiaih, S. (1995). Introduction to Electrical Engineering. Tata McGraw-Hill Education. p. 50. ISBN 9780074622926.
  • "Mr. Smee's Galvanic Battery". The Magazine of Science and School of Arts. II: 22. April 18, 1840. Formerly, a galvanic battery was a stupendous, and an expensive, machine occupying a large space and costing a considerable sum to keep it in its short-lived action. Now, a far more powerful instrument may be made in a snuff box and carried in the pocket. These remarks are forced upon us by the astonishing platinum batteries of Mr. Grove, and the chemico-mechanical batteries invented by Mr. Smee ...
  • Watt, Charles; Watt, John, eds. (1840). "Review: Proceedings of the London Electrical Society, 1841-1842 Session". The Chemist; Or, Reporter of Chemical Discoveries and Improvements, Volume 1. London: R. Hastings. Of the application of this cell a very important modification can be arranged, by converting it into an ACID battery, analogous to the platinized silver of Mr. Smee. Those who are acquainted with the ingenious device of that gentleman, are aware that the characteristic of his arrangement is, that the negative plate, where hydrogen is released, shall part with this hydrogen very readily. Under ordinary circumstances, the hydrogen adheres very much to the plates of an acid battery, and throws a considerable portion of the plates out of the action, by its presence on their surfaces. To remedy this, he has, as he terms it, "platinized" the surfaces.
  • Gordon, James Edward Henry (1880). A physical treatise on electricity and magnetism, Volume 1. D. Appleton and Company. p. 207.
  • Hatch, Harris B.; Stewart, Alexander A. (1918). "History of Electrotype Making". Electrotyping and stereotyping. Chicago: United Typothetae of America. pp. 2–4. In 1840 Smee invented a battery which made electrotyping possible commercially. ... Perhaps one of the greatest forward steps in connection with electrotyping was made when the plating dynamo was invented. The first adoption of a dynamo, in place of the Smee type of battery, was by Leslie, of New York, in 1872. Primer for apprentices in the printing industry. Good short introduction to the history of electrotyping.
  • Sprague, J. T. (July 1, 1874). "Electro-deposition of Metals". The Telegraphic Journal and Electrical Review. II (34): 237–239. The Smee cell is the cell most commonly employed because of its extreme simplicity of construction and management. A detailed discussion of the construction and maintenance of Smee cells, c. 1874.
  • Scott, David A. (2002). Copper and bronze in art: corrosion, colorants, conservation. Getty Publications. p. 22. ISBN 978-0-89236-638-5. Some extremely important commissions were made in electrotypes, such as the "bronzes" that adorn the Opera, Paris, and the 320 cm high statue of Prince Albert and four accompanying figures, erected behind the Albert Hall in London as a memorial to the Great Exhibition of 1851.
  • The standard electrode potential is 0.76 V for both pure zinc and for amalgamated zinc. See Vanýsek, Petr (2012). "Electrochemical Series". In Haynes, William M. (ed.). Handbook of Chemistry and Physics: 93rd Edition. Chemical Rubber Company. pp. 5–80. ISBN 9781439880494..

cool-solar-stuff.com

cwru.edu

electrochem.cwru.edu

  • Decker, Franco (January 2005). "Volta and the 'Pile'". Electrochemistry Encyclopedia. Case Western Reserve University. Archived from the original on 2012-07-16. Volta used silver, not copper, in his first cells; the chemical reactions involved in zinc/copper and zinc/silver cells are the same.

doi.org

electrochem.org

harvard.edu

ui.adsabs.harvard.edu

hilaroad.com

  • "Lemon Battery". Pembroke, Ontario: Hila Science Camp. Retrieved 2012-10-02. This webpage describes experiments starting with a single lemon cell that is studied with a multimeter, and then leads to a lemon battery capable of lighting an LED. Hila Science Camp has also posted a video showing how to build the battery and light an LED; see Create a Lemon Battery on YouTube.

how-things-work-science-projects.com

  • "Lemon Battery Project". Burlington, Iowa: How Things Work Science Projects. Retrieved 2012-10-11. This webpage contains instructions for elementary school teachers. The project uses the voltmeter to show that the battery is working. A key element is that several pairs of electrodes are used (iron/zinc, iron/copper, as well as zinc/copper) to yield different voltages.

odec.ca

  • Du, James (2011). "Fruit/veg batteries". Archived from the original on 2019-10-30. A quantitative study of both the voltages and currents produced by fruit batteries; part of a larger project including "penny batteries".

researchgate.net

  • Swartling, Daniel J.; Morgan, Charlotte (1998). "Lemon Cells Revisited—The Lemon-Powered Calculator". Journal of Chemical Education. 75 (2): 181–182. Bibcode:1998JChEd..75..181S. doi:10.1021/ed075p181. Retrieved 2020-12-22. These authors note that hydrogen evolves from the zinc electrode. As described somewhat later by Goodisman, this effect is unrelated to the evolution of hydrogen that occurs when the cell is providing electric current to an external circuit; the hydrogen associated with these currents evolves from the copper electrode.

starburstmagazine.com

syr.edu

surface.syr.edu

techhive.com

theguardian.com

unit5.org

web.archive.org

  • Decker, Franco (January 2005). "Volta and the 'Pile'". Electrochemistry Encyclopedia. Case Western Reserve University. Archived from the original on 2012-07-16. Volta used silver, not copper, in his first cells; the chemical reactions involved in zinc/copper and zinc/silver cells are the same.
  • "Potato Battery". Archived from the original on April 15, 2009.
  • Head Rush - Sauerkraut Clock. The Discovery Channel. Archived from the original on 2011-06-10. Sauerkraut is quite acidic due to the lactic acid produced during fermentation. The sauerkraut clock powers a digital thermometer in this video.
  • Du, James (2011). "Fruit/veg batteries". Archived from the original on 2019-10-30. A quantitative study of both the voltages and currents produced by fruit batteries; part of a larger project including "penny batteries".

worldcat.org

search.worldcat.org

youtube.com

  • "Lemon Battery". Pembroke, Ontario: Hila Science Camp. Retrieved 2012-10-02. This webpage describes experiments starting with a single lemon cell that is studied with a multimeter, and then leads to a lemon battery capable of lighting an LED. Hila Science Camp has also posted a video showing how to build the battery and light an LED; see Create a Lemon Battery on YouTube.
  • Head Rush - Sauerkraut Clock. The Discovery Channel. Archived from the original on 2011-06-10. Sauerkraut is quite acidic due to the lactic acid produced during fermentation. The sauerkraut clock powers a digital thermometer in this video.