Limit of a function (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Limit of a function" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
5th place
5th place
26th place
20th place
69th place
59th place
610th place
704th place
3,479th place
2,444th place
549th place
491st place
3rd place
3rd place
3,863rd place
2,637th place
3,627th place
2,467th place
1,045th place
746th place
11th place
8th place

arxiv.org (Global: 69th place; English: 59th place)

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

  • Felscher, Walter (2000), "Bolzano, Cauchy, Epsilon, Delta", American Mathematical Monthly, 107 (9): 844–862, doi:10.2307/2695743, JSTOR 2695743
  • Pourciau, Bruce (2001). "Newton and the Notion of Limit". Historia Mathematica. 28 (1): 18–30. doi:10.1006/hmat.2000.2301.
  • Pourciau, Bruce (2009). "Proposition II (Book I) of Newton's "Principia"". Archive for History of Exact Sciences. 63 (2): 129–167. doi:10.1007/s00407-008-0033-y. ISSN 0003-9519. JSTOR 41134303.
  • Grabiner, Judith V. (1983), "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus", American Mathematical Monthly, 90 (3): 185–194, doi:10.2307/2975545, JSTOR 2975545, collected in Who Gave You the Epsilon?, ISBN 978-0-88385-569-0 pp. 5–13. Also available at: http://www.maa.org/pubs/Calc_articles/ma002.pdf
  • Sinkevich, G. I. (2017), "Historia epsylontyki", Antiquitates Mathematicae, 10, Cornell University, arXiv:1502.06942, doi:10.14708/am.v10i0.805
  • Bŀaszczyk, Piotr; Katz, Mikhail; Sherry, David (2012), "Ten misconceptions from the history of analysis and their debunking", Foundations of Science, 18 (1): 43–74, arXiv:1202.4153, doi:10.1007/s10699-012-9285-8, S2CID 119134151

elsevier.com (Global: 610th place; English: 704th place)

linkinghub.elsevier.com

encyclopediaofmath.org (Global: 3,863rd place; English: 2,637th place)

jstor.org (Global: 26th place; English: 20th place)

  • Felscher, Walter (2000), "Bolzano, Cauchy, Epsilon, Delta", American Mathematical Monthly, 107 (9): 844–862, doi:10.2307/2695743, JSTOR 2695743
  • Pourciau, Bruce (2009). "Proposition II (Book I) of Newton's "Principia"". Archive for History of Exact Sciences. 63 (2): 129–167. doi:10.1007/s00407-008-0033-y. ISSN 0003-9519. JSTOR 41134303.
  • Grabiner, Judith V. (1983), "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus", American Mathematical Monthly, 90 (3): 185–194, doi:10.2307/2975545, JSTOR 2975545, collected in Who Gave You the Epsilon?, ISBN 978-0-88385-569-0 pp. 5–13. Also available at: http://www.maa.org/pubs/Calc_articles/ma002.pdf

libretexts.org (Global: 3,627th place; English: 2,467th place)

math.libretexts.org

maa.org (Global: 3,479th place; English: 2,444th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

tripod.com (Global: 549th place; English: 491st place)

jeff560.tripod.com

wisc.edu (Global: 1,045th place; English: 746th place)

math.wisc.edu

  • Keisler, H. Jerome (2008), "Quantifiers in limits" (PDF), Andrzej Mostowski and foundational studies, IOS, Amsterdam, pp. 151–170

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org

worldcat.org