Lindemann–Weierstrass theorem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Lindemann–Weierstrass theorem" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
2,594th place
2,546th place
3rd place
3rd place
6th place
6th place
1st place
1st place
451st place
277th place
124th place
544th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

  • Gelfond 2015. Gelfond, A.O. (2015) [1960], Transcendental and Algebraic Numbers, Dover Books on Mathematics, translated by Boron, Leo F., New York: Dover Publications, ISBN 978-0-486-49526-2, MR 0057921
  • Baker, Alan (2012), A Comprehensive Course in Number Theory, Cambridge University Press, Cambridge, p. 53, doi:10.1017/CBO9781139093835, ISBN 978-1-107-60379-0, MR 2954465

archive.org (Global: 6th place; English: 6th place)

bnf.fr (Global: 124th place; English: 544th place)

gallica.bnf.fr

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

  • Lindemann 1882a, Lindemann 1882b. Lindemann, F. (1882), "Über die Ludolph'sche Zahl.", Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 2: 679–682 Lindemann, F. (1882), "Über die Zahl π.", Mathematische Annalen, 20 (2): 213–225, doi:10.1007/bf01446522, S2CID 120469397, archived from the original on 2017-10-06, retrieved 2018-12-24
  • Murty & Rath 2014 Murty, M. Ram; Rath, Purusottam (2014), "Baker's Theorem", Transcendental Numbers, pp. 95–100, doi:10.1007/978-1-4939-0832-5_19, ISBN 978-1-4939-0831-8
  • Hilbert 1893, pp. 216–219. Hilbert, D. (1893), "Ueber die Transcendenz der Zahlen e und π.", Mathematische Annalen, 43 (2–3): 216–219, doi:10.1007/bf01443645, S2CID 179177945, archived from the original on 2017-10-06, retrieved 2018-12-24
  • Gordan 1893, pp. 222–224. Gordan, P. (1893), "Transcendenz von e und π.", Mathematische Annalen, 43 (2–3): 222–224, doi:10.1007/bf01443647, S2CID 123203471
  • Bertrand 1997, pp. 339–350. Bertrand, D. (1997), "Theta functions and transcendence", The Ramanujan Journal, 1 (4): 339–350, doi:10.1023/A:1009749608672, S2CID 118628723
  • Baker, Alan (2012), A Comprehensive Course in Number Theory, Cambridge University Press, Cambridge, p. 53, doi:10.1017/CBO9781139093835, ISBN 978-1-107-60379-0, MR 2954465

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

uni-goettingen.de (Global: 2,594th place; English: 2,546th place)

gdz.sub.uni-goettingen.de

web.archive.org (Global: 1st place; English: 1st place)