List of probabilistic proofs of non-probabilistic theorems (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "List of probabilistic proofs of non-probabilistic theorems" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
69th place
59th place
11th place
8th place
18th place
17th place
26th place
20th place
102nd place
76th place
low place
low place
4,464th place
4,468th place
9,437th place
low place
5th place
5th place
14th place
14th place
1,389th place
2,996th place
7,412th place
4,821st place

albany.edu

nyjm.albany.edu

archive.today

arxiv.org

doi.org

ejpecp.org

ecp.ejpecp.org

handle.net

hdl.handle.net

  • Bass, R.F.; Burdzy, K. (1989), "A probabilistic proof of the boundary Harnack principle", Seminar on Stochastic Processes, Boston: Birkhäuser (published 1990), pp. 1–16, hdl:1773/2249.

harvard.edu

ui.adsabs.harvard.edu

  • Salem, Raphaël (1951). "On singular monotonic functions whose spectrum has a given Hausdorff dimension". Ark. Mat. 1 (4): 353–365. Bibcode:1951ArM.....1..353S. doi:10.1007/bf02591372.
  • Bishop, C. (1991), "A characterization of Poissonian domains", Arkiv för Matematik, 29 (1): 1–24, Bibcode:1991ArM....29....1B, doi:10.1007/BF02384328 (see Section 6).
  • Izumi, Masaki; Srinivasan, Raman (2008), "Generalized CCR flows", Communications in Mathematical Physics, 281 (2): 529–571, arXiv:0705.3280, Bibcode:2008CMaPh.281..529I, doi:10.1007/s00220-008-0447-z, S2CID 12815055. Also arXiv:0705.3280.
  • Perez-Garcia, D.; Wolf, M.M.; C., Palazuelos; Villanueva, I.; Junge, M. (2008), "Unbounded violation of tripartite Bell inequalities", Communications in Mathematical Physics, 279 (2): 455–486, arXiv:quant-ph/0702189, Bibcode:2008CMaPh.279..455P, doi:10.1007/s00220-008-0418-4, S2CID 29110154

jstor.org

  • Blyth, Colin R.; Pathak, Pramod K. (1986), "A note on easy proofs of Stirling's theorem", American Mathematical Monthly, 93 (5): 376–379, doi:10.2307/2323600, JSTOR 2323600.
  • Gordon, Louis (1994), "A stochastic approach to the gamma function", American Mathematical Monthly, 101 (9): 858–865, doi:10.2307/2975134, JSTOR 2975134.
  • Davis, Burgess (1975), "Picard's theorem and Brownian motion", Transactions of the American Mathematical Society, 213: 353–362, doi:10.2307/1998050, JSTOR 1998050.

oxfordjournals.org

blms.oxfordjournals.org

semanticscholar.org

api.semanticscholar.org

tau.ac.il

uni-bielefeld.de

mathematik.uni-bielefeld.de

worldcat.org

search.worldcat.org