Longest common subsequence (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Longest common subsequence" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
451st place
277th place
69th place
59th place
1,185th place
840th place
18th place
17th place
4th place
4th place
207th place
136th place
6th place
6th place
3rd place
3rd place
102nd place
76th place
26th place
20th place

acm.org (Global: 1,185th place; English: 840th place)

dl.acm.org

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

archive.org (Global: 6th place; English: 6th place)

arxiv.org (Global: 69th place; English: 59th place)

books.google.com (Global: 3rd place; English: 3rd place)

doi.org (Global: 2nd place; English: 2nd place)

handle.net (Global: 102nd place; English: 76th place)

hdl.handle.net

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

jstor.org (Global: 26th place; English: 20th place)

nih.gov (Global: 4th place; English: 4th place)

pubmed.ncbi.nlm.nih.gov

psu.edu (Global: 207th place; English: 136th place)

citeseerx.ist.psu.edu

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

  • David Maier (1978). "The Complexity of Some Problems on Subsequences and Supersequences". J. ACM. 25 (2). ACM Press: 322–336. doi:10.1145/322063.322075. S2CID 16120634.
  • Wagner, Robert; Fischer, Michael (January 1974). "The string-to-string correction problem". Journal of the ACM. 21 (1): 168–173. CiteSeerX 10.1.1.367.5281. doi:10.1145/321796.321811. S2CID 13381535.
  • L. Bergroth and H. Hakonen and T. Raita (7–29 September 2000). A survey of longest common subsequence algorithms. Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000. A Curuna, Spain: IEEE Computer Society. pp. 39–48. doi:10.1109/SPIRE.2000.878178. ISBN 0-7695-0746-8. S2CID 10375334.
  • Hirschberg, D. S. (1975). "A linear space algorithm for computing maximal common subsequences". Communications of the ACM. 18 (6): 341–343. doi:10.1145/360825.360861. S2CID 207694727.
  • Chowdhury, Rezaul; Ramachandran, Vijaya (January 2006). "Cache-oblivious dynamic programming". Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm - SODA '06. pp. 591–600. doi:10.1145/1109557.1109622. ISBN 0898716055. S2CID 9650418.
  • Chowdhury, Rezaul; Le, Hai-Son; Ramachandran, Vijaya (July 2010). "Cache-oblivious dynamic programming for bioinformatics". IEEE/ACM Transactions on Computational Biology and Bioinformatics. 7 (3): 495–510. Bibcode:2010ITCBB...7..495C. doi:10.1109/TCBB.2008.94. PMID 20671320. S2CID 2532039.
  • Chvátal, Václáv; Sankoff, David (1975), "Longest common subsequences of two random sequences", Journal of Applied Probability, 12 (2): 306–315, doi:10.2307/3212444, JSTOR 3212444, MR 0405531, S2CID 250345191.
  • Lueker, George S. (2009), "Improved bounds on the average length of longest common subsequences", Journal of the ACM, 56 (3), A17, doi:10.1145/1516512.1516519, MR 2536132, S2CID 7232681.
  • Majumdar, Satya N.; Nechaev, Sergei (2005), "Exact asymptotic results for the Bernoulli matching model of sequence alignment", Physical Review E, 72 (2): 020901, 4, arXiv:q-bio/0410012, Bibcode:2005PhRvE..72b0901M, doi:10.1103/PhysRevE.72.020901, MR 2177365, PMID 16196539, S2CID 11390762.