Longest increasing subsequence (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Longest increasing subsequence" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
11th place
8th place
69th place
59th place
451st place
277th place
8,650th place
7,668th place
702nd place
520th place
833rd place
567th place
1st place
1st place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

arxiv.org (Global: 69th place; English: 59th place)

doi.org (Global: 2nd place; English: 2nd place)

  • Aldous, David; Diaconis, Persi (1999), "Longest increasing subsequences: from patience sorting to the Baik–Deift–Johansson theorem", Bulletin of the American Mathematical Society, 36 (4): 413–432, doi:10.1090/S0273-0979-99-00796-X.
  • Romik, Dan (2015). The Surprising Mathematics of Longest Increasing Subsequences. doi:10.1017/CBO9781139872003. ISBN 9781107075832.
  • Schensted, C. (1961), "Longest increasing and decreasing subsequences", Canadian Journal of Mathematics, 13: 179–191, doi:10.4153/CJM-1961-015-3, MR 0121305.
  • Hunt, J.; Szymanski, T. (1977), "A fast algorithm for computing longest common subsequences", Communications of the ACM, 20 (5): 350–353, doi:10.1145/359581.359603, S2CID 3226080.
  • Fredman, Michael L. (1975), "On computing the length of longest increasing subsequences", Discrete Mathematics, 11 (1): 29–35, doi:10.1016/0012-365X(75)90103-X.
  • Baik, Jinho; Deift, Percy; Johansson, Kurt (1999), "On the distribution of the length of the longest increasing subsequence of random permutations", Journal of the American Mathematical Society, 12 (4): 1119–1178, arXiv:math/9810105, doi:10.1090/S0894-0347-99-00307-0.
  • Samuels, Stephen. M.; Steele, J. Michael (1981), "Optimal Sequential Selection of a Monotone Sequence From a Random Sample" (PDF), Annals of Probability, 9 (6): 937–947, doi:10.1214/aop/1176994265, archived (PDF) from the original on July 30, 2018
  • Arlotto, Alessandro; Nguyen, Vinh V.; Steele, J. Michael (2015), "Optimal online selection of a monotone subsequence: a central limit theorem", Stochastic Processes and Their Applications, 125 (9): 3596–3622, arXiv:1408.6750, doi:10.1016/j.spa.2015.03.009, S2CID 15900488
  • Bruss, F. Thomas; Delbaen, Freddy (2001), "Optimal rules for the sequential selection of monotone subsequences of maximum expected length", Stochastic Processes and Their Applications, 96 (2): 313–342, doi:10.1016/S0304-4149(01)00122-3.
  • Bruss, F. Thomas; Delbaen, Freddy (2004), "A central limit theorem for the optimal selection process for monotone subsequences of maximum expected length", Stochastic Processes and Their Applications, 114 (2): 287–311, doi:10.1016/j.spa.2004.09.002.

dtic.mil (Global: 833rd place; English: 567th place)

apps.dtic.mil

numdam.org (Global: 8,650th place; English: 7,668th place)

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

upenn.edu (Global: 702nd place; English: 520th place)

www-stat.wharton.upenn.edu

web.archive.org (Global: 1st place; English: 1st place)