K. V. Sarma (1973). Computation of the True Moon by Madhava of sangamagrama. Hoshiarpur: Vishveshvaranand Institute of Sanskrit and Indological Studies, Panjab University. p. 12. Available: [2] (Accessed on 1 January 2023)
C. T. Rajagopal & M.S.Rangachari (1978). "On an Untapped Source of Medieval Keralese Mathematics". Archive for History of Exact Sciences. 18 (2): 101. doi:10.1007/BF00348142. S2CID51861422.
Madhava extended Archimedes' work on the geometric Method of Exhaustion to measure areas and numbers such as π, with arbitrary accuracy and error limits, to an algebraic infinite series with a completely separate error term.
C T Rajagopal and M S Rangachari (1986). "On medieval Keralese mathematics". Archive for History of Exact Sciences. 35 (2): 91–99. doi:10.1007/BF00357622. S2CID121678430.
C. T. Rajagopal & M.S.Rangachari (1978). "On an Untapped Source of Medieval Keralese Mathematics". Archive for History of Exact Sciences. 18 (2): 101. doi:10.1007/BF00348142. S2CID51861422.
Madhava extended Archimedes' work on the geometric Method of Exhaustion to measure areas and numbers such as π, with arbitrary accuracy and error limits, to an algebraic infinite series with a completely separate error term.
C T Rajagopal and M S Rangachari (1986). "On medieval Keralese mathematics". Archive for History of Exact Sciences. 35 (2): 91–99. doi:10.1007/BF00357622. S2CID121678430.