Majority rule (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Majority rule" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
5th place
5th place
26th place
20th place
1st place
1st place
3rd place
3rd place
179th place
183rd place
1,031st place
879th place
43rd place
161st place
low place
low place
2,268th place
1,400th place
14th place
14th place
low place
low place
low place
low place
121st place
142nd place

academia.edu

oxford.academia.edu

archive.today

archives-ouvertes.fr

hal.archives-ouvertes.fr

  • Jean-François Laslier (2011). And the loser is... Plurality Voting. ISBN 978-3-642-42955-2. ISSN 2267-828X. Wikidata Q108664719. {{cite book}}: |journal= ignored (help)

books.google.com

cdlib.org

repositories.cdlib.org

doi.org

jstor.org

seedsforchange.org.uk

stanford.edu

plato.stanford.edu

  • Ball, Terence and Antis Loizides, "James Mill", The Stanford Encyclopedia of Philosophy (Winter 2020 Edition), Edward N. Zalta (ed.).

thoughtcrime.org

u-cergy.fr

thema.u-cergy.fr

  • Pivato, Marcus (2015-08-01). "Condorcet meets Bentham" (PDF). Journal of Mathematical Economics. 59: 58–65. doi:10.1016/j.jmateco.2015.04.006. ISSN 0304-4068. We show that if the statistical distribution of utility functions in a population satisfies a certain condition, then a Condorcet winner will not only exist, but will also maximize the utilitarian social welfare function.

web.archive.org

wikidata.org

  • Jean-François Laslier (2011). And the loser is... Plurality Voting. ISBN 978-3-642-42955-2. ISSN 2267-828X. Wikidata Q108664719. {{cite book}}: |journal= ignored (help)

worldcat.org

search.worldcat.org

  • Jean-François Laslier (2011). And the loser is... Plurality Voting. ISBN 978-3-642-42955-2. ISSN 2267-828X. Wikidata Q108664719. {{cite book}}: |journal= ignored (help)
  • Pivato, Marcus (2015-08-01). "Condorcet meets Bentham" (PDF). Journal of Mathematical Economics. 59: 58–65. doi:10.1016/j.jmateco.2015.04.006. ISSN 0304-4068. We show that if the statistical distribution of utility functions in a population satisfies a certain condition, then a Condorcet winner will not only exist, but will also maximize the utilitarian social welfare function.
  • Krishna, Vijay; Morgan, John (2015). "Majority Rule and Utilitarian Welfare". American Economic Journal: Microeconomics. 7 (4): 339–375. doi:10.1257/mic.20140038. ISSN 1945-7669. JSTOR 43949040.