Mann–Whitney U test (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Mann–Whitney U test" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
4th place
4th place
11th place
8th place
26th place
20th place
5th place
5th place
102nd place
76th place
451st place
277th place
1,923rd place
1,068th place
120th place
125th place
2,120th place
1,328th place
1,873rd place
1,347th place
1,220th place
1,102nd place
low place
6,938th place
274th place
309th place
731st place
638th place
low place
low place
low place
low place
3,206th place
2,477th place
383rd place
320th place

ams.org

mathscinet.ams.org

  • Mann, Henry B.; Whitney, Donald R. (1947). "On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other". Annals of Mathematical Statistics. 18 (1): 50–60. doi:10.1214/aoms/1177730491. MR 0022058. Zbl 0041.26103.
  • Fay, Michael P.; Proschan, Michael A. (2010). "Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules". Statistics Surveys. 4: 1–39. doi:10.1214/09-SS051. MR 2595125. PMC 2857732. PMID 20414472.

apa.org

doi.apa.org

apache.org

commons.apache.org

bu.edu

sphweb.bumc.bu.edu

doi.org

doi.org

dx.doi.org

fharrell.com

github.com

handle.net

hdl.handle.net

jstor.org

  • [1], See Table 2.1 of Pratt (1964) "Robustness of Some Procedures for the Two-Sample Location Problem." Journal of the American Statistical Association. 59 (307): 655–680. If the two distributions are normal with the same mean but different variances, then Pr[X > Y] = Pr[Y < X] but the size of the Mann–Whitney test can be larger than the nominal level. So we cannot define the null hypothesis as Pr[X > Y] = Pr[Y < X] and get a valid test.
  • Conover, William J.; Iman, Ronald L. (1981). "Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics". The American Statistician. 35 (3): 124–129. doi:10.2307/2683975. JSTOR 2683975.
  • Bergmann, Reinhard; Ludbrook, John; Spooren, Will P.J.M. (2000). "Different Outcomes of the Wilcoxon–Mann–Whitney Test from Different Statistics Packages". The American Statistician. 54 (1): 72–77. doi:10.1080/00031305.2000.10474513. JSTOR 2685616. S2CID 120473946.
  • Kruskal, William H. (September 1957). "Historical Notes on the Wilcoxon Unpaired Two-Sample Test". Journal of the American Statistical Association. 52 (279): 356–360. doi:10.2307/2280906. JSTOR 2280906.
  • Wilcoxon, Frank (1945). "Individual comparisons by ranking methods". Biometrics Bulletin. 1 (6): 80–83. doi:10.2307/3001968. hdl:10338.dmlcz/135688. JSTOR 3001968.

nih.gov

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

researchgate.net

sagepub.com

journals.sagepub.com

scipy.org

docs.scipy.org

  • "scipy.stats.mannwhitneyu". SciPy v0.16.0 Reference Guide. The Scipy community. 24 July 2015. Retrieved 11 September 2015. scipy.stats.mannwhitneyu(x, y, use_continuity=True): Computes the Mann–Whitney rank test on samples x and y.

semanticscholar.org

api.semanticscholar.org

springer.com

link.springer.com

trb.org

onlinepubs.trb.org

ucdavis.edu

math.ucdavis.edu

worldcat.org

search.worldcat.org

zbmath.org

  • Mann, Henry B.; Whitney, Donald R. (1947). "On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other". Annals of Mathematical Statistics. 18 (1): 50–60. doi:10.1214/aoms/1177730491. MR 0022058. Zbl 0041.26103.