Mathematical analysis (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Mathematical analysis" in English language version.

refsWebsite
Global rank English rank
6th place
6th place
4,181st place
2,442nd place
1st place
1st place
3rd place
3rd place
2nd place
2nd place
11th place
8th place
40th place
58th place
26th place
20th place
low place
low place
18th place
17th place
102nd place
76th place
1,999th place
1,355th place

amazon.ca

  • The Fundamentals of Mathematical Analysis: International Series in Pure and Applied Mathematics, Volume 1. ASIN 0080134734.
  • The Fundamentals of Mathematical Analysis: International Series of Monographs in Pure and Applied Mathematics, Vol. 73-II. ASIN 1483213153.
  • Mathematical Analysis I. ASIN 3662569558.
  • Mathematical Analysis II. ASIN 3662569663.
  • Mathematical Analysis: A Special Course. ASIN 1483169561.
  • Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions. ASIN 3540636404.
  • Problems and Theorems in Analysis II: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry. ASIN 3540636862.
  • Mathematical Analysis: A Modern Approach to Advanced Calculus, 2nd Edition. ASIN 0201002884.
  • Principles of Mathematical Analysis. ASIN 0070856133.
  • Real Analysis: Measure Theory, Integration, and Hilbert Spaces. ASIN 0691113866.
  • Complex Analysis. ASIN 0691113858.
  • Functional Analysis: Introduction to Further Topics in Analysis. ASIN 0691113874.
  • Analysis I: Third Edition. ASIN 9380250649.
  • Analysis II: Third Edition. ASIN 9380250657.

archive.org

books.google.com

britannica.com

  • Stillwell, John Colin. "analysis | mathematics". Encyclopædia Britannica. Archived from the original on 2015-07-26. Retrieved 2015-07-31.

doi.org

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

insa.nic.in

jstor.org

rutgers.edu

math.rutgers.edu

semanticscholar.org

api.semanticscholar.org

web.archive.org

  • Stillwell, John Colin. "analysis | mathematics". Encyclopædia Britannica. Archived from the original on 2015-07-26. Retrieved 2015-07-31.
  • Jahnke, Hans Niels (2003). A History of Analysis. History of Mathematics. Vol. 24. American Mathematical Society. p. 7. doi:10.1090/hmath/024. ISBN 978-0821826232. Archived from the original on 2016-05-17. Retrieved 2015-11-15.
  • Pinto, J. Sousa (2004). Infinitesimal Methods of Mathematical Analysis. Horwood Publishing. p. 8. ISBN 978-1898563990. Archived from the original on 2016-06-11. Retrieved 2015-11-15.
  • Dun, Liu; Fan, Dainian; Cohen, Robert Sonné (1966). A comparison of Archimedes' and Liu Hui's studies of circles. Chinese studies in the history and philosophy of science and technology. Vol. 130. Springer. p. 279. ISBN 978-0-7923-3463-7. Archived from the original on 2016-06-17. Retrieved 2015-11-15., Chapter, p. 279 Archived 2016-05-26 at the Wayback Machine
  • Zill, Dennis G.; Wright, Scott; Wright, Warren S. (2009). Calculus: Early Transcendentals (3 ed.). Jones & Bartlett Learning. p. xxvii. ISBN 978-0763759957. Archived from the original on 2019-04-21. Retrieved 2015-11-15.
  • Pellegrino, Dana. "Pierre de Fermat". Archived from the original on 2008-10-12. Retrieved 2008-02-24.
  • Conway, John Bligh (1994). A Course in Functional Analysis (2nd ed.). Springer-Verlag. ISBN 978-0387972459. Archived from the original on 2020-09-09. Retrieved 2016-02-11.
  • Tao, Terence (2011). An Introduction to Measure Theory. Graduate Studies in Mathematics. Vol. 126. American Mathematical Society. doi:10.1090/gsm/126. ISBN 978-0821869192. Archived from the original on 2019-12-27. Retrieved 2018-10-26.