Matroid girth (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Matroid girth" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
4th place
4th place
9,843rd place
7,079th place

ams.org

mathscinet.ams.org

  • Cho, Jung Jin; Chen, Yong; Ding, Yu (2007), "On the (co)girth of a connected matroid", Discrete Applied Mathematics, 155 (18): 2456–2470, doi:10.1016/j.dam.2007.06.015, MR 2365057.
  • Cho, Chen & Ding (2007) observe that this is a corollary of a result of Alexander Vardy in coding theory: Vardy, Alexander (1997), "The intractability of computing the minimum distance of a code", IEEE Transactions on Information Theory, 43 (6): 1757–1766, doi:10.1109/18.641542, MR 1481035.
  • Jensen, Per M.; Korte, Bernhard (1982), "Complexity of matroid property algorithms", SIAM Journal on Computing, 11 (1): 184–190, doi:10.1137/0211014, MR 0646772.
  • Erickson, J.; Seidel, R. (1995), "Better lower bounds on detecting affine and spherical degeneracies", Discrete and Computational Geometry, 13 (1): 41–57, doi:10.1007/BF02574027, MR 1300508.
  • Hausmann, D.; Korte, B. (1981), "Algorithmic versus axiomatic definitions of matroids", Mathematical programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979), Mathematical Programming Studies, vol. 14, pp. 98–111, doi:10.1007/BFb0120924, MR 0600125.

carleton.ca

people.scs.carleton.ca

doi.org

  • Cho, Jung Jin; Chen, Yong; Ding, Yu (2007), "On the (co)girth of a connected matroid", Discrete Applied Mathematics, 155 (18): 2456–2470, doi:10.1016/j.dam.2007.06.015, MR 2365057.
  • Panolan, Fahad; Ramanujan, M. S.; Saurabh, Saket (2015), "On the parameterized complexity of girth and connectivity problems on linear matroids" (PDF), in Dehne, Frank; Sack, Jörg-Rüdiger; Stege, Ulrike (eds.), Algorithms and Data Structures: 14th International Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9214, Springer, pp. 566–577, doi:10.1007/978-3-319-21840-3_47.
  • Donoho, David L.; Elad, Michael (2003), "Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization", Proceedings of the National Academy of Sciences of the United States of America, 100 (5): 2197–2202, doi:10.1073/pnas.0437847100, PMC 153464, PMID 16576749.
  • Cho, Chen & Ding (2007) observe that this is a corollary of a result of Alexander Vardy in coding theory: Vardy, Alexander (1997), "The intractability of computing the minimum distance of a code", IEEE Transactions on Information Theory, 43 (6): 1757–1766, doi:10.1109/18.641542, MR 1481035.
  • Jensen, Per M.; Korte, Bernhard (1982), "Complexity of matroid property algorithms", SIAM Journal on Computing, 11 (1): 184–190, doi:10.1137/0211014, MR 0646772.
  • Erickson, J.; Seidel, R. (1995), "Better lower bounds on detecting affine and spherical degeneracies", Discrete and Computational Geometry, 13 (1): 41–57, doi:10.1007/BF02574027, MR 1300508.
  • Hausmann, D.; Korte, B. (1981), "Algorithmic versus axiomatic definitions of matroids", Mathematical programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979), Mathematical Programming Studies, vol. 14, pp. 98–111, doi:10.1007/BFb0120924, MR 0600125.

nih.gov

ncbi.nlm.nih.gov

pubmed.ncbi.nlm.nih.gov