Edmonds, Jack; Karp, Richard M. (April 1972). "Theoretical improvements in algorithmic efficiency for network flow problems". Journal of the ACM. 19 (2): 248–264. doi:10.1145/321694.321699. Previously announced at the International Conference on Combinatorial Structures and their Applications, Calgary, Alberta, 1969, MR0266680.
Dinic, E. A. (1970). "An algorithm for the solution of the problem of maximal flow in a network with power estimation". Doklady Akademii Nauk SSSR. 194: 754–757. MR0287976.
Karzanov, A. V. (1974). "The problem of finding the maximal flow in a network by the method of preflows". Doklady Akademii Nauk SSSR. 215: 49–52. MR0343879.
Čerkasskiĭ, B. V. (1977). "An algorithm for the construction of the maximal flow in a network with a labor expenditure of actions". Mathematical Methods for the Solution of Economic Problems. 7: 117–126. MR0503654.
Galil, Zvi (1980). "An algorithm for the maximal flow problem". Acta Informatica. 14 (3): 221–242. doi:10.1007/BF00264254. MR0587133. Preliminary version, "A new algorithm for the maximal flow problem", 19th Annual Symposium on Foundations of Computer Science (FOCS), 1978.
Chen, L.; Kyng, R.; Liu, Y.P.; Gutenberg, M.P.; Sachdeva, S. (2022). "Maximum Flow and Minimum-Cost Flow in Almost-Linear Time". arXiv:2203.00671 [cs.DS].
Bernstein, Aaron; Nanongkai, Danupon; Wulff-Nilsen, Christian (30 October 2022). "Negative-Weight Single-Source Shortest Paths in Near-linear Time". arXiv:2203.03456 [cs.DS].
Brand, J. vd; Lee, Y.T.; Liu, Y.P.; Saranurak, T.; Sidford, A; Song, Z.; Wang, D. (2021). "Minimum Cost Flows, MDPs, and ℓ1-Regression in Nearly Linear Time for Dense Instances". arXiv:2101.05719 [cs.DS].
Gao, Y.; Liu, Y.P.; Peng, R. (2021). "Fully Dynamic Electrical Flows: Sparse Maxflow Faster Than Goldberg-Rao". arXiv:2101.07233 [cs.DS].
Bernstein, A.; Blikstad, J.; Saranurak, T.; Tu, T. (2024). "Maximum Flow by Augmenting Paths in Time". arXiv:2406.03648 [cs.DS].
Gass, Saul I.; Assad, Arjang A. (2005). "Mathematical, algorithmic and professional developments of operations research from 1951 to 1956". An Annotated Timeline of Operations Research. International Series in Operations Research & Management Science. Vol. 75. pp. 79–110. doi:10.1007/0-387-25837-X_5 (inactive 1 July 2025). ISBN978-1-4020-8116-3.{{cite book}}: CS1 maint: DOI inactive as of July 2025 (link)
Edmonds, Jack; Karp, Richard M. (April 1972). "Theoretical improvements in algorithmic efficiency for network flow problems". Journal of the ACM. 19 (2): 248–264. doi:10.1145/321694.321699. Previously announced at the International Conference on Combinatorial Structures and their Applications, Calgary, Alberta, 1969, MR0266680.
Galil, Zvi (1980). "An algorithm for the maximal flow problem". Acta Informatica. 14 (3): 221–242. doi:10.1007/BF00264254. MR0587133. Preliminary version, "A new algorithm for the maximal flow problem", 19th Annual Symposium on Foundations of Computer Science (FOCS), 1978.
Itai, A.; Perl, Y.; Shiloach, Y. (1982). "The complexity of finding maximum disjoint paths with length constraints". Networks. 12 (3): 277–286. doi:10.1002/net.3230120306. ISSN1097-0037.
Itai, A.; Perl, Y.; Shiloach, Y. (1982). "The complexity of finding maximum disjoint paths with length constraints". Networks. 12 (3): 277–286. doi:10.1002/net.3230120306. ISSN1097-0037.