Maximum flow problem (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Maximum flow problem" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
11th place
8th place
69th place
59th place
207th place
136th place
1st place
1st place
6,413th place
4,268th place
5th place
5th place
415th place
327th place
833rd place
567th place
580th place
462nd place
1,999th place
1,355th place
9,835th place
6,097th place
4,464th place
4,468th place
18th place
17th place
26th place
20th place
1,564th place
1,028th place
low place
9,569th place
low place
8,600th place

ams.org (Global: 451st place; English: 277th place)

mathscinet.ams.org

arxiv.org (Global: 69th place; English: 59th place)

berkeley.edu (Global: 580th place; English: 462nd place)

focs2022.eecs.berkeley.edu

  • "FOCS 2022". focs2022.eecs.berkeley.edu. Retrieved 25 January 2023.

cmu.edu (Global: 1,564th place; English: 1,028th place)

cs.cmu.edu

doi.org (Global: 2nd place; English: 2nd place)

dtic.mil (Global: 833rd place; English: 567th place)

gitlab.com (Global: low place; English: 9,569th place)

harvard.edu (Global: 18th place; English: 17th place)

ui.adsabs.harvard.edu

jstor.org (Global: 26th place; English: 20th place)

mit.edu (Global: 415th place; English: 327th place)

math.mit.edu

web.mit.edu

pearson.com (Global: low place; English: 8,600th place)

psu.edu (Global: 207th place; English: 136th place)

citeseerx.ist.psu.edu

  • Schrijver, A. (2002). "On the history of the transportation and maximum flow problems". Mathematical Programming. 91 (3): 437–445. CiteSeerX 10.1.1.23.5134. doi:10.1007/s101070100259. S2CID 10210675.
  • Orlin, James B. (2013). "Max flows in O(nm) time, or better". Proceedings of the forty-fifth annual ACM symposium on Theory of Computing. pp. 765–774. CiteSeerX 10.1.1.259.5759. doi:10.1145/2488608.2488705. ISBN 9781450320290. S2CID 207205207.
  • Schauer, Joachim; Pferschy, Ulrich (1 July 2013). "The maximum flow problem with disjunctive constraints". Journal of Combinatorial Optimization. 26 (1): 109–119. CiteSeerX 10.1.1.414.4496. doi:10.1007/s10878-011-9438-7. ISSN 1382-6905. S2CID 6598669.

quantamagazine.org (Global: 6,413th place; English: 4,268th place)

rutgers.edu (Global: 1,999th place; English: 1,355th place)

cs.rutgers.edu

semanticscholar.org (Global: 11th place; English: 8th place)

api.semanticscholar.org

  • Schrijver, A. (2002). "On the history of the transportation and maximum flow problems". Mathematical Programming. 91 (3): 437–445. CiteSeerX 10.1.1.23.5134. doi:10.1007/s101070100259. S2CID 10210675.
  • Sherman, Jonah (2013). "Nearly Maximum Flows in Nearly Linear Time". Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science. pp. 263–269. arXiv:1304.2077. doi:10.1109/FOCS.2013.36. ISBN 978-0-7695-5135-7. S2CID 14681906.
  • Kelner, J. A.; Lee, Y. T.; Orecchia, L.; Sidford, A. (2014). "An Almost-Linear-Time Algorithm for Approximate Max Flow in Undirected Graphs, and its Multicommodity Generalizations" (PDF). Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. p. 217. arXiv:1304.2338. doi:10.1137/1.9781611973402.16. ISBN 978-1-61197-338-9. S2CID 10733914. Archived from the original (PDF) on 3 March 2016.
  • Orlin, James B. (2013). "Max flows in O(nm) time, or better". Proceedings of the forty-fifth annual ACM symposium on Theory of Computing. pp. 765–774. CiteSeerX 10.1.1.259.5759. doi:10.1145/2488608.2488705. ISBN 9781450320290. S2CID 207205207.
  • Goldberg, A. V.; Tarjan, R. E. (1988). "A new approach to the maximum-flow problem". Journal of the ACM. 35 (4): 921. doi:10.1145/48014.61051. S2CID 52152408. Preliminary version, 18th Annual ACM Symposium on Theory of Computing (STOC), 1986, doi:10.1145/12130.12144
  • Goldberg, A. V.; Rao, S. (1998). "Beyond the flow decomposition barrier". Journal of the ACM. 45 (5): 783. doi:10.1145/290179.290181. S2CID 96030.
  • Schauer, Joachim; Pferschy, Ulrich (1 July 2013). "The maximum flow problem with disjunctive constraints". Journal of Combinatorial Optimization. 26 (1): 109–119. CiteSeerX 10.1.1.414.4496. doi:10.1007/s10878-011-9438-7. ISSN 1382-6905. S2CID 6598669.

tau.ac.il (Global: 4,464th place; English: 4,468th place)

cs.tau.ac.il

utas.edu.au (Global: 9,835th place; English: 6,097th place)

eprints.utas.edu.au

web.archive.org (Global: 1st place; English: 1st place)

worldcat.org (Global: 5th place; English: 5th place)

search.worldcat.org