Mean curvature flow (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Mean curvature flow" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
3,707th place
2,409th place
102nd place
76th place
1,045th place
746th place

ams.org

mathscinet.ams.org

doi.org

  • Gage, M.; Hamilton, R.S. (1986). "The heat equation shrinking convex plane curves". J. Differential Geom. 23 (1): 69–96. doi:10.4310/jdg/1214439902.
  • Hamilton, Richard S. (1982). "Three-manifolds with positive Ricci curvature". Journal of Differential Geometry. 17 (2): 255–306. doi:10.4310/jdg/1214436922.
  • Huisken, Gerhard (1984). "Flow by mean curvature of convex surfaces into spheres". J. Differential Geom. 20 (1): 237–266. doi:10.4310/jdg/1214438998.
  • Grayson, Matthew A. (1987). "The heat equation shrinks embedded plane curves to round points". J. Differential Geom. 26 (2): 285–314. doi:10.4310/jdg/1214441371.
  • Huisken, Gerhard (1990), "Asymptotic behavior for singularities of the mean curvature flow", Journal of Differential Geometry, 31 (1): 285–299, doi:10.4310/jdg/1214444099, hdl:11858/00-001M-0000-0013-5CFD-5, MR 1030675.
  • Ecker, Klaus (2004), Regularity Theory for Mean Curvature Flow, Progress in Nonlinear Differential Equations and their Applications, vol. 57, Boston, MA: Birkhäuser, doi:10.1007/978-0-8176-8210-1, ISBN 0-8176-3243-3, MR 2024995.

handle.net

hdl.handle.net

projecteuclid.org

wisc.edu

math.wisc.edu

  • Angenent, Sigurd B. (1992), "Shrinking doughnuts" (PDF), Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), Progress in Nonlinear Differential Equations and their Applications, vol. 7, Boston, MA: Birkhäuser, pp. 21–38, MR 1167827.