Monoamine releasing agent (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Monoamine releasing agent" in English language version.

refsWebsite
Global rank English rank
4th place
4th place
2nd place
2nd place
11th place
8th place
1,182nd place
725th place
3rd place
3rd place
5th place
5th place
18th place
17th place
7,721st place
4,593rd place
low place
low place
325th place
255th place
207th place
136th place
1st place
1st place
low place
low place
low place
low place
low place
low place
14th place
14th place
low place
low place
102nd place
76th place
low place
low place
120th place
125th place
low place
low place
low place
low place
206th place
124th place
1,697th place
1,040th place
low place
low place
low place
low place
low place
8,709th place

abstractsonline.com

  • Cheetham SC, Kulkarni RS, Rowley HL, Heal DJ (2007). The SH rat model of ADHD has profoundly different catecholaminergic responses to amphetamine's enantiomers compared with Sprague-Dawleys. Neuroscience 2007, San Diego, CA, Nov 3-7, 2007. Society for Neuroscience. Archived from the original on 27 July 2024. Both d- and l-[amphetamine (AMP)] evoked rapid increases in extraneuronal concentrations of [noradrenaline (NA)] and [dopamine (DA)] that reached a maximum 30 or 60 min after administration. However, the [spontaneously hypertensive rats (SHRs)] were much more responsive to AMP's enantiomers than the [Sprague-Dawleys (SDs)]. Thus, 3 mg/kg d-AMP produced a peak increase in [prefrontal cortex (PFC)] NA of 649 ± 87% (p<0.001) in SHRs compared with 198 ± 39% (p<0.05) in SDs; the corresponding figures for [striatal (STR)] DA were 4898 ± 1912% (p<0.001) versus 1606 ± 391% (p<0.001). At 9 mg/kg, l-AMP maximally increased NA efflux by 1069 ± 105% (p<0.001) in SHRs compared with 157 ± 24% (p<0.01) in SDs; the DA figures were 3294 ± 691% (p<0.001) versus 459 ± 107% (p<0.001).

archive.today

  • Cheetham SC, Kulkarni RS, Rowley HL, Heal DJ (2007). The SH rat model of ADHD has profoundly different catecholaminergic responses to amphetamine's enantiomers compared with Sprague-Dawleys. Neuroscience 2007, San Diego, CA, Nov 3-7, 2007. Society for Neuroscience. Archived from the original on 27 July 2024. Both d- and l-[amphetamine (AMP)] evoked rapid increases in extraneuronal concentrations of [noradrenaline (NA)] and [dopamine (DA)] that reached a maximum 30 or 60 min after administration. However, the [spontaneously hypertensive rats (SHRs)] were much more responsive to AMP's enantiomers than the [Sprague-Dawleys (SDs)]. Thus, 3 mg/kg d-AMP produced a peak increase in [prefrontal cortex (PFC)] NA of 649 ± 87% (p<0.001) in SHRs compared with 198 ± 39% (p<0.05) in SDs; the corresponding figures for [striatal (STR)] DA were 4898 ± 1912% (p<0.001) versus 1606 ± 391% (p<0.001). At 9 mg/kg, l-AMP maximally increased NA efflux by 1069 ± 105% (p<0.001) in SHRs compared with 157 ± 24% (p<0.01) in SDs; the DA figures were 3294 ± 691% (p<0.001) versus 459 ± 107% (p<0.001).

books.google.com

cpdd.org

d1wqtxts1xzle7.cloudfront.net

doi.org

duq.edu

dsc.duq.edu

  • Liu Y (28 March 2018). "Structural Determinants for Inhibitor Recognition by the Dopamine Transporter". Duquesne Scholarship Collection. Retrieved 11 December 2024. The most commonly studied DAT substrates are amphetamines, including amphetamine and methamphetamine (Fig. 9). S-(+)-amphetamine releases dopamine with an EC50 of 8.7 nM; the R-(−)-amphetamine is 3-fold weaker, at 27.7 nM (EC50) (Blough, Page et al. 2005). Although weaker, a similar trend is seen for the optical isomers of methamphetamine. S-(+)-methamphetamine releases dopamine with an EC50 of 24.5 nM, while the R-(−)-methamphetamine is 16-fold less active at 416 nM (EC50) (Blough, Page et al. 2005). [...] Blough, B. E., K. M. Page, et al. (2005). "Struture-activity relationship studies of DAT, SERT, and NET releasers." New Perspectives on Neurotransmitter Transporter Pharmacology.

handle.net

hdl.handle.net

harvard.edu

ui.adsabs.harvard.edu

ljmu.ac.uk

researchonline.ljmu.ac.uk

netfirms.com

bitnest.netfirms.com

nih.gov

pubmed.ncbi.nlm.nih.gov

ncbi.nlm.nih.gov

archives.nida.nih.gov

  • Rothman RB, Dersch CM, Baumann MH, Carroll FI, Partilla JS (1999). "Development of a High-Throughput Assay for Biogenic Amine Transporter Substrates". Problems of Drug Dependence 1999: Proceedings of the 61st Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc (PDF). NIDA Res Monogr. Vol. 180. pp. 1–476 (251). PMID 11680410. The major goal of this study was to establish a high-throughput assay to detect [monoamine transporter substrates (SBSTs)] for use in a project to develop new drugs with dual activity as SBSTs of DAT and SERT. METHODS. Using minor modifications of published procedures, rat brain synaptosomes were preloaded with either [3H]DA, [3H]NE or [3H]5-HT. Test drugs were added and the reaction terminated by rapid filtration over Whatman GF/B filters. Release was quantified by counting how much tritium was retained on the filters. RESULTS. Using optimized conditions known SBSTs potently decreased retained tritium in a dose-dependent manner whereas known [uptake inhibitors (UIs)] were weak or ineffective. UIs shifted SBST inhibition curves to the right, consistent with antagonist-like activity. CONCLUSION. We have developed high throughput assays which detect SBSTs for the DA, 5-HT and NE transporters.
  • Partilla JS, Dersch CM, Baumann MH, Carroll FI, Rothman RB (1999). "Profiling CNS Stimulants with a High-Throughput Assay for Biogenic Amine Transporter Substractes". Problems of Drug Dependence 1999: Proceedings of the 61st Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc (PDF). NIDA Res Monogr. Vol. 180. pp. 1–476 (252). PMID 11680410. RESULTS. Methamphetamine and amphetamine potently released NE (IC50s = 14.3 and 7.0 nM) and DA (IC50s = 40.4 nM and 24.8 nM), and were much less potent releasers of 5-HT (IC50s = 740 nM and 1765 nM). Phentermine released all three biogenic amines with an order of potency NE (IC50 = 28.8 nM)> DA (IC50 = 262 nM)> 5-HT (IC50 = 2575 nM). Aminorex released NE (IC50 = 26.4 nM), DA (IC50 = 44.8 nM) and 5-HT (IC50 = 193 nM). Chlorphentermine was a very potent 5-HT releaser (IC50 = 18.2 nM), a weaker DA releaser (IC50 = 935 nM) and inactive in the NE release assay. Chlorphentermine was a moderate potency inhibitor of [3H]NE uptake (Ki = 451 nM). Diethylpropion, which is self-administered, was a weak DA uptake inhibitor (Ki = 15 µM) and NE uptake inhibitor (Ki = 18.1 µM) and essentially inactive in the other assays. Phendimetrazine, which is self-administered, was a weak DA uptake inhibitor (IC50 = 19 µM), a weak NE uptake inhibitor (8.3 µM) and essentially inactive in the other assays.

openlibrary.org

patents.google.com

proquest.com

psu.edu

citeseerx.ist.psu.edu

researchgate.net

rxisk.org

  • Baumeister AA (2021). "Is Attention-Deficit/Hyperactivity Disorder a Risk Syndrome for Parkinson's Disease?" (PDF). Harv Rev Psychiatry. 29 (2): 142–158. doi:10.1097/HRP.0000000000000283. PMID 33560690. It has been suggested that the association between PD and ADHD may be explained, in part, by toxic effects of these drugs on DA neurons.241 [...] An important question is whether amphetamines, as they are used clinically to treat ADHD, are toxic to DA neurons. In most of the animal and human studies cited above, stimulant exposure levels are high relative to clinical doses, and dosing regimens (as stimulants) rarely mimic the manner in which these drugs are used clinically. The study by Ricaurte and colleagues248 is an exception. In that study, baboons orally self-administered a racemic (3:1 d/l) amphetamine mixture twice daily in increasing doses ranging from 2.5 to 20 mg/day for four weeks. Plasma amphetamine concentrations, measured at one-week intervals, were comparable to those observed in children taking amphetamine for ADHD. Two to four weeks after cessation of amphetamine treatment, multiple markers of striatal DA function were decreased, including DA and DAT. In another group of animals (squirrel monkeys), d/l amphetamine blood concentration was titrated to clinically comparable levels for four weeks by administering varying doses of amphetamine by orogastric gavage. These animals also had decreased markers of striatal DA function assessed two weeks after cessation of amphetamine.

scholar.google.com

scholaris.ca

utoronto.scholaris.ca

  • Lam V (2017). "Identification and in vivo Characterization of a Potential TAAR1 Antagonist". TSpace. Retrieved 13 February 2025. While no in vivo studies have been done with selective sigma 2 receptor ligands measuring amphetamine-mediated locomotor activity, it was found that sigma 2 receptor agonists potentiate amphetamine-mediated dopamine efflux in PC12 cells in vitro (Izenwasser et al., 1998; Weatherspoon and Werling, 1999). These in vitro results indicate that sigma 2 receptor agonists would potentiate amphetamine-, and potentially cocaine-mediated locomotor activity in vivo. Due to the lack of selective sigma 2 ligands, the precise mechanism of sigma 2 enhancement of dopamine release is not known. However, it has been postulated that sigma 2 activation leads to an increase in intracellular calcium, either through an interaction with the plasma membrane bound L-type calcium channels, or via the ER-bound IP3 ligand gated calcium channels (Zhang and Cuevas, 2002; Cassano et al., 2006, 2009). This increase in intracellular calcium is hypothesized to promote the activation of PKC, and therefore the phosphorylation of DAT, leading to an increase in extracellular dopamine (Derbez et al., 2002).

semanticscholar.org

api.semanticscholar.org

  • Shimazu S, Miklya I (May 2004). "Pharmacological studies with endogenous enhancer substances: beta-phenylethylamine, tryptamine, and their synthetic derivatives". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 28 (3): 421–427. doi:10.1016/j.pnpbp.2003.11.016. PMID 15093948. S2CID 37564231.
  • Berlin I, Warot D, Aymard G, Acquaviva E, Legrand M, Labarthe B, et al. (September 2001). "Pharmacodynamics and pharmacokinetics of single nasal (5 mg and 10 mg) and oral (50 mg) doses of ephedrine in healthy subjects". European Journal of Clinical Pharmacology. 57 (6–7): 447–455. doi:10.1007/s002280100317. PMID 11699608. S2CID 12410591.
  • Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (1 January 2006). "Central fatigue: the serotonin hypothesis and beyond". Sports Medicine. 36 (10): 881–909. doi:10.2165/00007256-200636100-00006. PMID 17004850. S2CID 5178189.
  • Roelands B, Meeusen R (March 2010). "Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature". Sports Medicine. 40 (3): 229–246. doi:10.2165/11533670-000000000-00000. PMID 20199121. S2CID 25717280.
  • Rothman RB, Baumann MH (April 2002). "Serotonin releasing agents. Neurochemical, therapeutic and adverse effects". Pharmacology, Biochemistry, and Behavior. 71 (4): 825–836. doi:10.1016/s0091-3057(01)00669-4. PMID 11888573. S2CID 24296122.
  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, et al. (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin". Synapse. 39 (1): 32–41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. PMID 11071707. S2CID 15573624.
  • Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (May 2005). "Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs". The Journal of Pharmacology and Experimental Therapeutics. 313 (2): 848–854. doi:10.1124/jpet.104.080101. PMID 15677348. S2CID 12135483.
  • Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, et al. (October 2003). "In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates". The Journal of Pharmacology and Experimental Therapeutics. 307 (1): 138–145. doi:10.1124/jpet.103.053975. PMID 12954796. S2CID 19015584.
  • Rothman RB, Clark RD, Partilla JS, Baumann MH (June 2003). "(+)-Fenfluramine and its major metabolite, (+)-norfenfluramine, are potent substrates for norepinephrine transporters". The Journal of Pharmacology and Experimental Therapeutics. 305 (3): 1191–1199. doi:10.1124/jpet.103.049684. PMID 12649307. S2CID 21164342.
  • Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, et al. (June 2003). "3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro". Molecular Pharmacology. 63 (6): 1223–1229. doi:10.1124/mol.63.6.1223. PMID 12761331. S2CID 839426.
  • Rothman RB, Blough BE, Woolverton WL, Anderson KG, Negus SS, Mello NK, et al. (June 2005). "Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration". The Journal of Pharmacology and Experimental Therapeutics. 313 (3): 1361–1369. doi:10.1124/jpet.104.082503. PMID 15761112. S2CID 19802702.

shaunlacob.com

universityeprint.com

asian.universityeprint.com

uno.edu

scholarworks.uno.edu

vcu.edu

scholarscompass.vcu.edu

web.archive.org

worldcat.org

search.worldcat.org

  • Blough B (July 2008). "Dopamine-releasing agents" (PDF). In Trudell ML, Izenwasser S (eds.). Dopamine Transporters: Chemistry, Biology and Pharmacology. Hoboken [NJ]: Wiley. pp. 305–320. ISBN 978-0-470-11790-3. OCLC 181862653. OL 18589888W.
  • Parrott AC, Stuart M (1 September 1997). "Ecstasy (MDMA), amphetamine, and LSD: comparative mood profiles in recreational polydrug users". Human Psychopharmacology: Clinical and Experimental. 12 (5): 501–504. CiteSeerX 10.1.1.515.2896. doi:10.1002/(sici)1099-1077(199709/10)12:5<501::aid-hup913>3.3.co;2-m. ISSN 1099-1077.
  • Vaughan RA, Henry LK, Foster JD, Brown CR (2024). "Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux". Advances in Pharmacology. Vol. 99. Elsevier. pp. 1–33. doi:10.1016/bs.apha.2023.10.003. ISBN 978-0-443-21933-7. ISSN 1054-3589. PMID 38467478. The characteristics and mechanisms of efflux are complex and incompletely understood, and have been summarized in many comprehensive reviews including (Reith & Gnegy, 2020; Robertson, Matthies, & Galli, 2009; Sitte & Freissmuth, 2015). [...] Early studies implicating protein phosphorylation in AMPH-evoked DA efflux were performed by Giambalvo, who demonstrated that DAT-mediated uptake of AMPH impacted the activity and subcellular localization of protein kinase C (PKC) with characteristics that correlated with DA efflux (Giambalvo, 1992), and Gnegy and colleagues, whose many studies reinforced the relationship between efflux, kinases, and ionic conditions including PKC, PKCβ, Ca2+, and Ca1+-calmodulin regulated protein kinase (CaMK) (Gnegy et al., 2004; Johnson, Guptaroy, Lund, Shamban, & Gnegy, 2005; Kantor, Hewlett, & Gnegy, 1999). [...] With respect to DAT most studies have focused on PKC, CaMK, and mitogen activated protein kinases (MAPKs), but many other signaling and kinase pathways have been implicated in efflux mechanisms for all of the MATs (Bermingham & Blakely, 2016; Vaughan & Foster, 2013). [...] DAT phosphorylation stimulated by AMPH or METH also occurs on this domain and is blocked by PKC inhibitors (Cervinski et al., 2005; Karam et al., 2017), indicating the capacity of the drugs to involve the PKC pathway. How this occurs is not known, but could potentially follow from drug perturbation of local ion/Ca2+ concentrations that impact PTM enzymes, or alternatively could occur by substrate-driven induction of transporter conformations in which phosphorylation sites become more or less available to enzyme action. [...] There are many other Ser and Thr residues on DAT intracellular loops and domains that may serve as phosphorylation sites, and in vitro studies have demon- strated phosphorylation of N— and C—terminal peptide sequences by many kinases in addition to PKC, ERK, and CaMK that have been implicated in regulation and efflux including protein kinase A (PKA), protein kinase G (PKG), casein kinase 2 (CK2), p38 kinase, JNK2, Cdk5, and Akt1 (Gorentla I et al., 2009; Vaughan & Foster, 2013). [...] The regulatory, efflux, and post-translational characteristics of NET and SERT show many similarities to DAT that indicate conservation of mechanism, but also some distinct properties that reflect requirements of specific neuronal populations. [...] With respect to efflux there are many similarities between SERT, NET, and DAT that indicate conservation of mechanisms.
  • Trachsel D, Lehmann D, Enzensperger C (2013). "[Kapitel 5:] Ersatz des Arylteils durch nichtaromatische Reste" [[Chapter 5:] Replacement of the Aryl Moiety by Non-Aromatic Residues]. Phenethylamine: von der Struktur zur Funktion [Phenethylamines: From Structure to Function]. Nachtschatten-Science (in German). Solothurn: Nachtschatten-Verlag. pp. 289–346. ISBN 978-3-03788-700-4. OCLC 858805226. Retrieved 29 January 2025.
  • Trachsel D, Lehmann D, Enzensperger C (2013). "[Kapitel 4:] Heteroarylalkylamine" [[Chapter 4:] Heteroarylalkylamines]. Phenethylamine: von der Struktur zur Funktion [Phenethylamines: From Structure to Function]. Nachtschatten-Science (in German). Solothurn: Nachtschatten-Verlag. pp. 289–346. ISBN 978-3-03788-700-4. OCLC 858805226. Retrieved 29 January 2025.
  • Decker AM, Partilla JS, Baumann MH, Rothman RB, Blough BE (2016). "The biogenic amine transporter activity of vinylogous amphetamine analogs". MedChemComm. 7 (8): 1657–1663. doi:10.1039/C6MD00245E. ISSN 2040-2503.
  • Cozzi NV, Daley PF, Evans DL, Partilla JS, Rothman RB, Ruoho AE, et al. (2011). "Trifluoromethyl ring-substituted methcathinone analogs: activity at monoamine uptake transporters". The FASEB Journal. 25 (S1). doi:10.1096/fasebj.25.1_supplement.1083.1. ISSN 0892-6638.