Moser spindle (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Moser spindle" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
451st place
277th place
11th place
8th place
69th place
59th place
18th place
17th place

ams.org

mathscinet.ams.org

arxiv.org

doi.org

  • Moser, L.; Moser, W. (1961), "Solution to problem 10", Can. Math. Bull., 4: 187–189, doi:10.1017/S0008439500025753, S2CID 246244722.
  • Bondy, J. A.; Murty, U. S. R. (2008), Graph Theory, Graduate Texts in Mathematics, vol. 244, Springer, p. 358, doi:10.1007/978-1-84628-970-5, ISBN 978-1-84628-969-9.
  • Berge, C. (1989), "Minimax relations for the partial q-colorings of a graph", Discrete Mathematics, 74 (1–2): 3–14, doi:10.1016/0012-365X(89)90193-3, MR 0989117.
  • Gervacio, Severino V.; Lim, Yvette F.; Maehara, Hiroshi (2008), "Planar unit-distance graphs having planar unit-distance complement", Discrete Mathematics, 308 (10): 1973–1984, doi:10.1016/j.disc.2007.04.050, MR 2394465.
  • Burkert, Jeffrey; Johnson, Peter (2011), "Szlam's lemma: mutant offspring of a Euclidean Ramsey problem from 1973, with numerous applications", Ramsey theory, Progr. Math., vol. 285, Birkhäuser/Springer, New York, pp. 97–113, doi:10.1007/978-0-8176-8092-3_6, MR 2759046. See also Soifer (2008), Problem 40.26, p. 496.
  • Horvat, Boris; Kratochvíl, Jan; Pisanski, Tomaž (2011), "On the Computational Complexity of Degenerate Unit Distance Representations of Graphs", Combinatorial Algorithms: 21st International Workshop, IWOCA 2010, London, UK, July 26-28, 2010, Revised Selected Papers, Lecture Notes in Computer Science, vol. 6460, pp. 274–285, arXiv:1001.0886, Bibcode:2011LNCS.6460..274H, doi:10.1007/978-3-642-19222-7_28, ISBN 978-3-642-19221-0, S2CID 17585590.
  • Haas, Ruth; Orden, David; Rote, Günter; Santos, Francisco; Servatius, Brigitte; Servatius, Herman; Souvaine, Diane; Streinu, Ileana; Whiteley, Walter (2005), "Planar minimally rigid graphs and pseudo-triangulations", Computational Geometry Theory and Applications, 31 (1–2): 31–61, arXiv:math/0307347, doi:10.1016/j.comgeo.2004.07.003, MR 2131802.
  • Winkler, Peter (November 2011), "Puzzled: Distances Between Points on the Plane", Communications of the ACM, 54 (11): 120, doi:10.1145/2018396.2018422, S2CID 195633418. Solution, issue 12, December 2011, doi:10.1145/2043174.2043200.

harvard.edu

ui.adsabs.harvard.edu

semanticscholar.org

api.semanticscholar.org

  • Moser, L.; Moser, W. (1961), "Solution to problem 10", Can. Math. Bull., 4: 187–189, doi:10.1017/S0008439500025753, S2CID 246244722.
  • Horvat, Boris; Kratochvíl, Jan; Pisanski, Tomaž (2011), "On the Computational Complexity of Degenerate Unit Distance Representations of Graphs", Combinatorial Algorithms: 21st International Workshop, IWOCA 2010, London, UK, July 26-28, 2010, Revised Selected Papers, Lecture Notes in Computer Science, vol. 6460, pp. 274–285, arXiv:1001.0886, Bibcode:2011LNCS.6460..274H, doi:10.1007/978-3-642-19222-7_28, ISBN 978-3-642-19221-0, S2CID 17585590.
  • Winkler, Peter (November 2011), "Puzzled: Distances Between Points on the Plane", Communications of the ACM, 54 (11): 120, doi:10.1145/2018396.2018422, S2CID 195633418. Solution, issue 12, December 2011, doi:10.1145/2043174.2043200.