Multigrid method (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Multigrid method" in English language version.

refsWebsite
Global rank English rank
3rd place
3rd place
2nd place
2nd place
69th place
59th place
18th place
17th place
9,450th place
5,700th place
11th place
8th place
1,185th place
840th place

acm.org

dl.acm.org

arxiv.org

books.google.com

  • Roman Wienands; Wolfgang Joppich (2005). Practical Fourier analysis for multigrid methods. CRC Press. p. 17. ISBN 978-1-58488-492-7.
  • U. Trottenberg; C. W. Oosterlee; A. Schüller (2001). Multigrid. Academic Press. ISBN 978-0-12-701070-0.
  • Yu Zhu; Andreas C. Cangellaris (2006). Multigrid finite element methods for electromagnetic field modeling. Wiley. p. 132 ff. ISBN 978-0-471-74110-7.
  • M. T. Heath (2002). "Section 11.5.7 Multigrid Methods". Scientific Computing: An Introductory Survey. McGraw-Hill Higher Education. p. 478 ff. ISBN 978-0-07-112229-0.
  • P. Wesseling (1992). An Introduction to Multigrid Methods. Wiley. ISBN 978-0-471-93083-9.
  • F. Hülsemann; M. Kowarschik; M. Mohr; U. Rüde (2006). "Parallel geometric multigrid". In Are Magnus Bruaset; Aslak Tveito (eds.). Numerical solution of partial differential equations on parallel computers. Birkhäuser. p. 165. ISBN 978-3-540-29076-6.
  • For example, J. Blaz̆ek (2001). Computational fluid dynamics: principles and applications. Elsevier. p. 305. ISBN 978-0-08-043009-6. and Achi Brandt and Rima Gandlin (2003). "Multigrid for Atmospheric Data Assimilation: Analysis". In Thomas Y. Hou; Eitan Tadmor (eds.). Hyperbolic problems: theory, numerics, applications: proceedings of the Ninth International Conference on Hyperbolic Problems of 2002. Springer. p. 369. ISBN 978-3-540-44333-9.
  • Achi Brandt (2002). "Multiscale scientific computation: review". In Timothy J. Barth; Tony Chan; Robert Haimes (eds.). Multiscale and multiresolution methods: theory and applications. Springer. p. 53. ISBN 978-3-540-42420-8.
  • Björn Engquist; Olof Runborg (2002). "Wavelet-based numerical homogenization with applications". In Timothy J. Barth; Tony Chan; Robert Haimes (eds.). Multiscale and Multiresolution Methods. Vol. 20 of Lecture Notes in Computational Science and Engineering. Springer. p. 140 ff. ISBN 978-3-540-42420-8.
  • U. Trottenberg; C. W. Oosterlee; A. Schüller (2001). Multigrid. Academic Press. ISBN 978-0-12-701070-0.
  • Albert Cohen (2003). Numerical Analysis of Wavelet Methods. Elsevier. p. 44. ISBN 978-0-444-51124-9.
  • U. Trottenberg; C. W. Oosterlee; A. Schüller (2001). "Chapter 9: Adaptive Multigrid". Multigrid. Academic Press. p. 356. ISBN 978-0-12-701070-0.
  • Yair Shapira (2003). "Algebraic multigrid". Matrix-based multigrid: theory and applications. Springer. p. 66. ISBN 978-1-4020-7485-1.
  • U. Trottenberg; C. W. Oosterlee; A. Schüller (2001). Multigrid. Academic Press. p. 417. ISBN 978-0-12-701070-0.

doi.org

harvard.edu

ui.adsabs.harvard.edu

kent.edu

etna.mcs.kent.edu

semanticscholar.org

api.semanticscholar.org