Murray 1926b, p. 299: "The cost per second, E, of operating a section of blood vessel was taken to be the sum of two work terms: (1) the work done per second against friction by the flow of blood, given in ergs/sec. by the product pf, where p is the fall in pressure in dynes/cm., and f is the rate of blood flow in cc./sec., and (2) the work done per second in maintaining the mere volume of blood contained in the vessel, given also in ergs/sec. by the term bvol, where vol is the volume in cc., and b is the cost in ergs/sec. per cc. of blood." Murray, Cecil D. (1926b). "The Physiological Principle of Minimum Work: II. Oxygen Exchange in Capillaries". Proceedings of the National Academy of Sciences of the United States of America. 12 (5): 299–304. Bibcode:1926PNAS...12..299M. doi:10.1073/pnas.12.5.299. PMC1084544. PMID16587082.
Murray 1926a, p. 210: "Let b, then, be the cost of blood in ergs per second per cubic centimeter of whole blood of average composition (and let B be the cost in Calories per day per cc. of blood). There is, as far as I can see, nothing arbitrary about this step: it is certain that the maintenance of blood requires fuel. (The cost of blood may, however, be a complex account distributed among such factors as the small metabolism of blood itself, the cost of upkeep of all the constituents, perhaps especially of hemoglobin, the cost of the containing vessels, and the burden placed upon the body in general by the mere weight of blood.) Murray, Cecil D. (1926a). "The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume". Proceedings of the National Academy of Sciences of the United States of America. 12 (3): 207–214. Bibcode:1926PNAS...12..207M. doi:10.1073/pnas.12.3.207. PMC1084489. PMID16576980.
Sherman 1981, p. 437: "If the volume of vessel tissue is proportional to the square of the internal radius (as when wall thickness is proportional to r), then Murray's derivation can hold for a biological vasculature even when the flowing fluid itself is inert and nonliving, as in the airways of the lungs, where the vessels are filled with air (of no metabolic cost) rather than with blood." Sherman, Thomas F. (1981). "On connecting large vessels to small: The meaning of Murray's law". The Journal of General Physiology. 78 (4): 431–53. doi:10.1085/jgp.78.4.431. PMC2228620. PMID7288393.
Williams et al. 2008, p. 56: "This is not strictly accurate; Murray's law geometry was derived to obtain minimum system-level power demand and if lowest resistance is required then the largest vessel diameter should be selected at all points." The quote misidentifies the Murray's law optimization — Murray's law does provide lowest resistance, assuming system volume is fixed — but correctly identifies that, when system volume can grow freely, choosing maximal diameters will lower resistance. Williams, Hugo R.; Trask, Richard S.; Weaver, Paul M.; Bond, Ian P. (2008). "Minimum mass vascular networks in multifunctional materials". Journal of the Royal Society Interface. 5 (18): 55–65. doi:10.1098/rsif.2007.1022. PMC2605499. PMID17426011.
Murray 1926b, p. 299: "The cost per second, E, of operating a section of blood vessel was taken to be the sum of two work terms: (1) the work done per second against friction by the flow of blood, given in ergs/sec. by the product pf, where p is the fall in pressure in dynes/cm., and f is the rate of blood flow in cc./sec., and (2) the work done per second in maintaining the mere volume of blood contained in the vessel, given also in ergs/sec. by the term bvol, where vol is the volume in cc., and b is the cost in ergs/sec. per cc. of blood." Murray, Cecil D. (1926b). "The Physiological Principle of Minimum Work: II. Oxygen Exchange in Capillaries". Proceedings of the National Academy of Sciences of the United States of America. 12 (5): 299–304. Bibcode:1926PNAS...12..299M. doi:10.1073/pnas.12.5.299. PMC1084544. PMID16587082.
Murray 1926a, p. 210: "Let b, then, be the cost of blood in ergs per second per cubic centimeter of whole blood of average composition (and let B be the cost in Calories per day per cc. of blood). There is, as far as I can see, nothing arbitrary about this step: it is certain that the maintenance of blood requires fuel. (The cost of blood may, however, be a complex account distributed among such factors as the small metabolism of blood itself, the cost of upkeep of all the constituents, perhaps especially of hemoglobin, the cost of the containing vessels, and the burden placed upon the body in general by the mere weight of blood.) Murray, Cecil D. (1926a). "The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume". Proceedings of the National Academy of Sciences of the United States of America. 12 (3): 207–214. Bibcode:1926PNAS...12..207M. doi:10.1073/pnas.12.3.207. PMC1084489. PMID16576980.
Murray 1926b, p. 299: "The cost per second, E, of operating a section of blood vessel was taken to be the sum of two work terms: (1) the work done per second against friction by the flow of blood, given in ergs/sec. by the product pf, where p is the fall in pressure in dynes/cm., and f is the rate of blood flow in cc./sec., and (2) the work done per second in maintaining the mere volume of blood contained in the vessel, given also in ergs/sec. by the term bvol, where vol is the volume in cc., and b is the cost in ergs/sec. per cc. of blood." Murray, Cecil D. (1926b). "The Physiological Principle of Minimum Work: II. Oxygen Exchange in Capillaries". Proceedings of the National Academy of Sciences of the United States of America. 12 (5): 299–304. Bibcode:1926PNAS...12..299M. doi:10.1073/pnas.12.5.299. PMC1084544. PMID16587082.
Murray 1926a, p. 210: "Let b, then, be the cost of blood in ergs per second per cubic centimeter of whole blood of average composition (and let B be the cost in Calories per day per cc. of blood). There is, as far as I can see, nothing arbitrary about this step: it is certain that the maintenance of blood requires fuel. (The cost of blood may, however, be a complex account distributed among such factors as the small metabolism of blood itself, the cost of upkeep of all the constituents, perhaps especially of hemoglobin, the cost of the containing vessels, and the burden placed upon the body in general by the mere weight of blood.) Murray, Cecil D. (1926a). "The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume". Proceedings of the National Academy of Sciences of the United States of America. 12 (3): 207–214. Bibcode:1926PNAS...12..207M. doi:10.1073/pnas.12.3.207. PMC1084489. PMID16576980.
Sherman 1981, p. 437: "If the volume of vessel tissue is proportional to the square of the internal radius (as when wall thickness is proportional to r), then Murray's derivation can hold for a biological vasculature even when the flowing fluid itself is inert and nonliving, as in the airways of the lungs, where the vessels are filled with air (of no metabolic cost) rather than with blood." Sherman, Thomas F. (1981). "On connecting large vessels to small: The meaning of Murray's law". The Journal of General Physiology. 78 (4): 431–53. doi:10.1085/jgp.78.4.431. PMC2228620. PMID7288393.
Williams et al. 2008, p. 56: "This is not strictly accurate; Murray's law geometry was derived to obtain minimum system-level power demand and if lowest resistance is required then the largest vessel diameter should be selected at all points." The quote misidentifies the Murray's law optimization — Murray's law does provide lowest resistance, assuming system volume is fixed — but correctly identifies that, when system volume can grow freely, choosing maximal diameters will lower resistance. Williams, Hugo R.; Trask, Richard S.; Weaver, Paul M.; Bond, Ian P. (2008). "Minimum mass vascular networks in multifunctional materials". Journal of the Royal Society Interface. 5 (18): 55–65. doi:10.1098/rsif.2007.1022. PMC2605499. PMID17426011.
Murray 1926b, p. 299: "The cost per second, E, of operating a section of blood vessel was taken to be the sum of two work terms: (1) the work done per second against friction by the flow of blood, given in ergs/sec. by the product pf, where p is the fall in pressure in dynes/cm., and f is the rate of blood flow in cc./sec., and (2) the work done per second in maintaining the mere volume of blood contained in the vessel, given also in ergs/sec. by the term bvol, where vol is the volume in cc., and b is the cost in ergs/sec. per cc. of blood." Murray, Cecil D. (1926b). "The Physiological Principle of Minimum Work: II. Oxygen Exchange in Capillaries". Proceedings of the National Academy of Sciences of the United States of America. 12 (5): 299–304. Bibcode:1926PNAS...12..299M. doi:10.1073/pnas.12.5.299. PMC1084544. PMID16587082.
Murray 1926a, p. 210: "Let b, then, be the cost of blood in ergs per second per cubic centimeter of whole blood of average composition (and let B be the cost in Calories per day per cc. of blood). There is, as far as I can see, nothing arbitrary about this step: it is certain that the maintenance of blood requires fuel. (The cost of blood may, however, be a complex account distributed among such factors as the small metabolism of blood itself, the cost of upkeep of all the constituents, perhaps especially of hemoglobin, the cost of the containing vessels, and the burden placed upon the body in general by the mere weight of blood.) Murray, Cecil D. (1926a). "The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume". Proceedings of the National Academy of Sciences of the United States of America. 12 (3): 207–214. Bibcode:1926PNAS...12..207M. doi:10.1073/pnas.12.3.207. PMC1084489. PMID16576980.
Sherman 1981, p. 437: "If the volume of vessel tissue is proportional to the square of the internal radius (as when wall thickness is proportional to r), then Murray's derivation can hold for a biological vasculature even when the flowing fluid itself is inert and nonliving, as in the airways of the lungs, where the vessels are filled with air (of no metabolic cost) rather than with blood." Sherman, Thomas F. (1981). "On connecting large vessels to small: The meaning of Murray's law". The Journal of General Physiology. 78 (4): 431–53. doi:10.1085/jgp.78.4.431. PMC2228620. PMID7288393.
Williams et al. 2008, p. 56: "This is not strictly accurate; Murray's law geometry was derived to obtain minimum system-level power demand and if lowest resistance is required then the largest vessel diameter should be selected at all points." The quote misidentifies the Murray's law optimization — Murray's law does provide lowest resistance, assuming system volume is fixed — but correctly identifies that, when system volume can grow freely, choosing maximal diameters will lower resistance. Williams, Hugo R.; Trask, Richard S.; Weaver, Paul M.; Bond, Ian P. (2008). "Minimum mass vascular networks in multifunctional materials". Journal of the Royal Society Interface. 5 (18): 55–65. doi:10.1098/rsif.2007.1022. PMC2605499. PMID17426011.